SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Mannervik Bengt Professor) "

Search: WFRF:(Mannervik Bengt Professor)

  • Result 1-10 of 16
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Modén, Olof (author)
  • Mutational Analysis and Redesign of Alpha-class Glutathione Transferases for Enhanced Azathioprine Activity
  • 2013
  • Doctoral thesis (other academic/artistic)abstract
    • Glutathione transferase (GST) A2-2 is the human enzyme most efficient in catalyzing azathioprine activation. Structure-function relationships were sought explaining the higher catalytic efficiency compared to other alpha class GSTs. By screening a DNA shuffling library, five recombined segments were identified that were conserved among the most active mutants. Mutational analysis confirmed the importance of these short segments as their insertion into low-active GSTs introduced higher azathioprine activity. Besides, H-site mutagenesis led to decreased azathioprine activity when the targeted positions belonged to these conserved segments and mainly enhanced activity when other positions were targeted. Hydrophobic residues were preferred in positions 208 and 213.The prodrug azathioprine is today primarily used for maintaining remission in inflammatory bowel disease. Therapy leads to adverse effects for 30 % of the patients and genotyping of the metabolic genes involved can explain some of these incidences. Five genotypes of human A2-2 were characterized and variant A2*E had 3–4-fold higher catalytic efficiency with azathioprine, due to a proline mutated close to the H-site. Faster activation might lead to different metabolite distributions and possibly more adverse effects. Genotyping of GSTs is recommended for further studies.Molecular docking of azathioprine into a modeled structure of A2*E suggested three positions for mutagenesis. The most active mutants had small or polar residues in the mutated positions. Mutant L107G/L108D/F222H displayed a 70-fold improved catalytic efficiency with azathioprine. Determination of its structure by X-ray crystallography showed a widened H-site, suggesting that the transition state could be accommodated in a mode better suited for catalysis.The mutational analysis increased our understanding of the azathioprine activation in alpha class GSTs and highlighted A2*E as one factor possibly behind the adverse drug-effects. A successfully redesigned GST, with 200-fold enhanced catalytic efficiency towards azathioprine compared to the starting point A2*C, might find use in targeted enzyme-prodrug therapies.
  •  
2.
  • Zhang, Wei (author)
  • Directed Evolution of Glutathione Transferases with Altered Substrate Selectivity Profiles : A Laboratory Evolution Study Shedding Light on the Multidimensional Nature of Epistasis
  • 2011
  • Doctoral thesis (other academic/artistic)abstract
    • Directed evolution is generally regarded as a useful approach in protein engineering. By subjecting members of a mutant library to the power of Darwinian evolution, desired protein properties are obtained. Numerous reports have appeared in the literature showing the success of tailoring proteins for various applications by this method. Is it a one-way track that protein practitioners can only learn from nature to enable more efficient protein engineering? A structure-and-mechanism-based approach, supplemented with the use of reduced amino acid alphabets, was proposed as a general means for semi-rational enzyme engineering. Using human GST A2-2*E, the most active human enzyme in the bioactivation of azathioprine, as a parental enzyme to test this approach, a L107G/L108D/F222H triple-point mutant of GST A2-2*E (thereafter designated as GDH) was discovered with 70-fold increased activity, approaching the upper limit of specific activity of the GST scaffold. The approach was further experimentally verified to be more successful than intuitively choosing active-site residues in proximity to the bound substrate for the improvement of enzyme performance. By constructing all intermediates along all putative mutational paths leading from GST A2-2*E to mutant GDH and assaying them with nine alternative substrates, the fitness landscapes were found to be “rugged” in differential fashions in substrate-activity space. The multidimensional fitness landscapes stemming from functional promiscuity can lead to alternative outcomes with enzymes optimized for other features than the selectable markers that were relevant at the origin of the evolutionary process. The results in this thesis suggest that in this manner an evolutionary response to changing environmental conditions can readily be mounted. In summary, the thesis demonstrates the attractive features of the structure-and-mechanism-based semi-rational directed evolution approach for optimizing enzyme performance. Moreover, the results gained from the studies show that laboratory evolution may refine our understanding of evolutionary process in nature.
  •  
3.
  • Ajayi, Abiodun (author)
  • Study of molecular mechanism(s) underlying neurodegeneration in SCA7 disease : Role of NOX enzymes and oxidative stress
  • 2013
  • Licentiate thesis (other academic/artistic)abstract
    • Spinocerebellar ataxia type 7 (SCA7) is an autosomal dominant neurodegenerative disorder caused by a CAG trinucleotide expansion in the SCA7/ATXN7 gene resulting in progressive ataxia and retinal dystrophy. SCA7 belongs to a group of neurodegenerative disorders called polyglutamine (polyQ) diseases, that share the common feature of glutamine tract expansions within otherwise unrelated proteins. Common suggested mechanisms by which polyQ disorders induce toxicity include aggregation and induction of oxidative stress.In this work, we examined the connection between oxidative stress and toxicity in SCA7 disease. We showed that expression of mutant ataxin-7 (ATXN7) results in elevated level of reactive oxygen species (ROS) and oxidative stress, leading to toxicity. Our results also revealed that the oxidative stress further contributes to mutant ATXN7 aggregation. We showed, for the first time, that the source of the ROS in mutant ATXN7 cells is thorough the activation of the NOX1 enzyme. Interestingly, our results further revealed that the increased level of NOX1 activity and expression by mutant ATXN7 results in a metabolic shift similar to the Warburg effect. Treatments with antioxidants or a NOX1 specific inhibitor decreased the ROS level, restored the metabolic shift and ameliorated the ATXN7 induced toxicity. Taken together, we suggest that mutant ATXN7 specifically activate NOX1 enzyme and that antioxidants treatment or NOX1 specific inhibition could be a potential therapeutic strategy for SCA7.
  •  
4.
  • Aslam, Muhammad (author)
  • The fruit fly Drosophila melanogaster GSTE6 and E7; characterization, immobilization and transgenic overexpression
  • 2014
  • Licentiate thesis (other academic/artistic)abstract
    • Glutathione transferases (GSTs) are multifunctional enzymes that are universally distributed in most eukaryotes and prokaryotes. They play a pivotal role in the metabolism and detoxication of numerous endogenous and exogenous electrophiles by conjugating them with ubiquitous tripeptide glutathione. In this study we have immobilized two heterologously expressed and purified Epsilon-class enzymes, GSTE6 and GSTE7, from of Drosophila melanogaster on nanoporous alumina membranes. The membranes were derivatized with 3-aminopropyl-triethoxysilane and the amino groups were activated with carbonyldiimidazole to allow coupling of the enzymes. Kinetic analyses of the immobilized enzymes were carried out in a circulating flow system using CDNB (1-chloro-2,4-dinitrobenzene) as substrate, followed by specificity screening with alternative substrates. A good correlation was observed between the substrate screening data for immobilized enzyme and corresponding data for the enzymes in solution. The stability of the immobilized enzymes was virtually identical to that for the enzymes in solution and no leakage of enzyme from the matrix could be observed.Additionally, we have investigated the catalytic activities of GSTE7 with organic isothiocyanates (ITCs). These reactive compounds are strong electrophilic molecules produced in plants by the hydrolysis of glucosinolates and exert toxicity in biological tissues.  Our in vitro studies, showed high catalytic activity of GSTE7 towards ITCs. We have then explored the in vivo effect of phenethyl isothiocyanate (PEITC) and allyl isothiocyanate (AITC) in transgenic fruit flies overexpressing GSTE7. A concentration of 0.25 mM PEITC in standard fly food was shown to be toxic to flies and significantly shortened the lifespan. We noticed that overexpression of GSTE7 could protect females from the initial acute toxic effects, but had no positive effect on long term exposure. The effect on males seems to be the opposite to that of females, where a higher mortality was seen in fly males overexpressing GST E7 after one week of exposure.  On the other hand 1mM concentration of AITC showed no toxic effects, but dramatically reduced the oviposition activity of wild-type flies in comparison to the transgenic flies.
  •  
5.
  • Fedulova, Natalia, 1980- (author)
  • Alpha-class Glutathione Transferases from Pig: a Comparative Study
  • 2011
  • Doctoral thesis (other academic/artistic)abstract
    • Glutathione transferases (GSTs, EC 2.5.1.18) possess multiple functions and have potential applications in biotechnology. This thesis contributes to knowledge about glutathione transferases from Sus scrofa (pig). The study is needed for better understanding of biochemical processes in this species and is desirable for drug development, for food industry research and in medicine. A primary role of GSTs is detoxication of electrophilic compounds. Our study presents porcine GST A1-1 as a detoxication enzyme expressed in many tissues, in particular adipose tissue, liver and pituitary gland. Based on comparison of activity and expression profiles, this enzyme can be expected to function in vivo similarly to human GST A2-2 (Paper II). In addition to its protective function, human GST A3-3 is an efficient steroid isomerase and contributes to the biosynthesis of steroid hormones in vivo. We characterized a porcine enzyme, pGST A2-2, displaying high steroid-isomerase activity and resembling hGST A3-3 in other properties as well. High levels of pGST A2-2 expression were found in ovary, testis and liver. The properties of porcine enzyme strengthen the notion that particular GSTs play an important role in steroidogenesis (Paper I). Combination of time-dependent and enzyme concentration-dependent losses of activity as well as the choice of the organic solvent for substrates were found to cause irreproducibility of activity measurements of GSTs. Enzyme adsorption to surfaces was found to be the main explanation of high variability of activity values of porcine GST A2-2 and human Alpha-class GSTs reported in the literature. Several approaches to improved functional comparison of highly active GSTs were proposed (Paper III).  
  •  
6.
  • Gurell, Ann, 1981- (author)
  • Biochemical Studies on a Plant Epoxide Hydrolase : Discovery of a Proton Entry and Exit Pathway and the Use of In vitro Evolution to Shift Enantioselectivity
  • 2010
  • Doctoral thesis (other academic/artistic)abstract
    • The work leading to this thesis has provided additional information and novel knowledge concerning structure-function relationship in the potato epoxide hydrolase. Epoxide hydrolases are enzymes catalyzing the hydrolysis of epoxides to yield the corresponding vicinal diols. The reaction mechanism proceeds via a nucleophilic attack resulting in a covalent alkylenzyme intermediate, which in turn is attacked by a base-activated water molecule, followed by product release. Epoxides and diols are precursors in the production of chiral compounds and the use of epoxide hydrolases as biocatalysts is growing. The promising biocatalyst StEH1, a plant epoxide hydrolase from potato, has been investigated in this thesis. In paper I the active site residue Glu35, was established to be important for the formation of the alkylenzyme intermediate, activating the nucleophile for attack by facilitated proton release through a hydrogen bond network. Glu35 is also important during the hydrolytic half reaction by optimally orienting the hydrolytic water molecule, aiding in the important dual function of the histidine base. Glu35 makes it possible for the histidine to work as both an acid and a base. In paper II a putative proton wire composed of five water molecules lining a protein tunnel was proposed to facilitate effective proton transfer from the exterior to the active site, aiding in protonation of the alkylenzyme intermediate. The protein tunnel is also proposed to stabilize plant epoxide hydrolases via hydrogen bonds between water molecules and protein. Enzyme variants with modified enantiospecificity for the substrate (2,3-epoxypropyl)benzene have been constructed by in vitro evolution using the CASTing approach. Residues lining the active site pocket were targeted for mutagenesis. From the second generation libraries a quadruple enzyme variant, W106L/L109Y/V141K/I155V, displayed a radical shift in enantioselectivity. The wild-type enzyme favored the S-enantiomer with a ratio of 2:1, whereas the quadruple variant showed a 15:1 preference for the R-enantiomer.
  •  
7.
  • Lindström, Helena (author)
  • Equine glutathione transferase A3-3 : an efficient steroid isomerase
  • 2018
  • Licentiate thesis (other academic/artistic)abstract
    • Glutathione transferases (GSTs) comprise a superfamily of enzymes prominently involved in detoxication by making toxic electrophiles more polar and therefore more easily excretable. However some GSTs have developed alternative functions. Thus, a member of the Alpha class GSTs in tissues of the ruminants, Sus scrofa and Homo sapiens is involved in biosynthesis of steroid hormones, catalyzing a double-bond isomerization reaction as the last step of synthesis of Δ4-pregnene-3,20-dione (progesterone) and the obligatory step in the synthesis of the last precursor of testosterone, Δ4-androstenene-3,17-dione. As neurosteroids, steroid hormones are involved in such diverse functions as cognition, depression and memory and are suggested to play a protective role in neuropathologies including Alzheimer’s disease, Parkinson’s disease and brain injury.The human GST A3-3 is the most efficient steroid double-bond isomerase known so far in mammals. The current work extends discoveries of GST enzymes that act in the steroidogenic pathways in large mammals to Equus ferus caballus. In contrast to the rodents, Equus ferus caballus shares the steroidogenic pathway with Homo sapiens, which makes it a more suitable model for human steroidogenesis than the murine one.In the present study, the mRNA encoding the steroid isomerase GST A3-3 was cloned from stallion testis. The equine GST A3-3 (EcaGST A3-3) was heterologously expressed in E. coli and purified by centrifugation, sonication, affinity chromatography and dialysis. The in vitro measurements of enzymatic activity were followed spectrophotometrically and revealed highly efficient steroid double-bond isomerase activity in the biosynthetic pathways to progesterone and testosterone. The enzyme now ranks as one of the most efficient steroid isomerases known in mammals.The concentrations of EcaGSTA3 mRNA were highest in hormone-producing organs such as ovary, testis and adrenal gland. The high efficiency and the tissue distribution of EcaGST A3-3 support the view that the enzyme plays a physiologically significant role in the biosynthesis of steroid hormones.Inhibition of EcaGST A3-3 might help treat reproductive and neurodegenerative disorders. An FDA-approved library of 1040 compounds was screened for novel inhibitors of EcaGST A3-3. The inhibition pattern of EcaGST A3-3 is similar to that of the human GST A3-3. 
  •  
8.
  • Lindström, Helena, 1961- (author)
  • Exploring the steroidogenic activity of glutathione transferases across species
  • 2020
  • Doctoral thesis (other academic/artistic)abstract
    • Glutathione transferases (GSTs) comprise a superfamily of enzymes prominently involved in detoxication. However, some GSTs have developed alternative functions. Thus, a member of the Alpha class GSTs in tissues of Homo sapiens (humans), Sus scrofa (pigs) and ruminants is involved in biosynthesis of steroid hormones, catalyzing a double-bond isomerization reaction as the last step of synthesis of Δ4-pregnene-3,20-dione (progesterone) and the obligatory step in the synthesis of the last precursor of testosterone, Δ4-androstenene-3,17-dione. Steroids regulate several vital aspects of life such as for example glucose homeostasis, inflammation, immunosuppression, blood pressure, reproduction and pregnancy.The human GST A3-3 was the most efficient steroid double-bond isomerase known so far in mammals. Our work extends discoveries of GSTs that act in the steroidogenic pathways in large mammals to Equus ferus caballus (horse). The kinetic profile of EcaGST A3-3 reveals a catalytic efficiency higher than that of the human enzyme making EcaGST A3-3 the most efficient steroid double-bond isomerase known today in mammals.In contrast to the rodents, Equus ferus caballus shares the steroidogenic pathway with Homo sapiens, which makes it a more suitable model for human steroidogenesis than the murine one. Inhibition of EcaGST A3-3 might help treat endocrine disorders. We screened a library of 1040 FDA-approved compounds for novel inhibitors of EcaGST A3-3 and made a further characterization of the most potent inhibitors.To extend the search for steroidogenic GSTs to other mammals, we probed the degree of GST A3-3 amino acid sequence conservation in Homo sapiens, Equus ferus caballus, Canis lupus familiaris (dog), Capra hircus (goat) and Monodelphis domestica (gray short-tailed opossum). We generated expression vectors containing homologous DNA from these species to facilitate further evaluation of the activity of these GSTs in mammals.We continued to expand the research to insects by investigating the steroidogenic activity of GSTE14 in Drosophila melanogaster (fruit fly), where this enzyme has been shown to be implicated in molting.Our work has provided insights into the role of GSTs in steroidogenesis in mammals and insects, further accentuating the functional versatility of GSTs. We have provided an initial step for the development of potential treatments of steroidogenic disorders as well as tools for further investigation of activity of these GSTs in mammals.
  •  
9.
  • Mazari, Aslam M.A. 1982- (author)
  • Studies on Human and Drosophila melanogaster Glutathione Transferases of Biomedical and Biotechnological Interest
  • 2016
  • Doctoral thesis (other academic/artistic)abstract
    • Glutathione transferases (GSTs, EC.2.5.1.18) are multifunctional enzymes that are universally distributed in all cellular life forms. They play important roles in metabolism and detoxication of endogenously produced toxic compounds and xenobiotics. GSTs have gained considerable interest over the years for biomedical and biotechnological applications due to their involvement in the conjugation of glutathione (GSH) to a vast array of chemical species. Additionally, the emergence of non-detoxifying functions of GSTs has further increased their biological significance. The present work encompasses four scientific studies aimed at investigating human as well as fruit fly Drosophila melanogaster GSTs.Paper I presents the immobilization of GSTs on nanoporous alumina membranes. Kinetic analyses with 1-chloro-2,4-dinitrobenzene followed by specificity screening with alternative substrates showed a good correlation between the data obtained from immobilized enzymes and the enzymes in solution. Furthermore, immobilization showed no adverse effects on the stability of the enzymes. Paper II presents inhibition studies of human hematopoietic prostaglandin D2 synthase (HPGDS), a promising therapeutic target for anti-allergic and anti-inflammatory drugs. Our screening results with an FDA-approved drug library revealed a number of effective inhibitors of HPGDS with IC50 values in the low micromolar range. Paper III concerns the toxicity of organic isothiocyanates (ITCs) that showed high catalytic activities with GSTE7 in vitro. The in vivo results showed that phenethyl isothiocyanate (PEITC) and allyl isothiocyanate in millimolar dietary concentrations conferred toxicity to the adult fruit flies leading to death or shortened life-span. The transgenic female flies overexpressing GSTE7 showed increased tolerance against PEITC toxicity compared to the wild-type. However, the effect was opposite in male flies overexpressing GSTE7 after one week exposure. Notably, the transgene enhanced the oviposition activity of flies with and without ITCs exposure. Paper IV highlights Drosophila GSTs as efficient catalysts of the environmental pollutant and explosive 2,4,6-trinitrotoluene and the related 2,4-dinitrotoluene degradation. This result suggests the potential of GST transgenes in plants for biotransformation and phytoremediation of these persistent environmental pollutants. 
  •  
10.
  • Rúnarsdóttir, Arna, 1977- (author)
  • The Quest for Functional Quasi-Species in Glutathione Transferase Libraries
  • 2010
  • Doctoral thesis (other academic/artistic)abstract
    • Glutathione transferases (GSTs) are good candidates for investigations of enzyme evolution, due to their broad substrate specificities and structural homology. The primary role of GSTs is to act as phase II detoxifying enzymes protecting the cell from toxic compounds of both endo- and exogenous origins. The detoxification is conducted via conjugation with glutathione (GSH), which facilitates their removal from the body. The work presented in this thesis has supported a theory for enzyme evolution when the multiple pathway to novel functions can been seen to involve a “generalist” state from which “specialist” states with a new activities can evolve. The generalist has broader specificity and lower activity than the specialist. The term quasi-species is used for a group or cluster of enzyme variants with similar functional properties, and this entity has been suggested as the fittest group for further evolution. This is based on studies of the evolution of new GST variants in two generation. Three diverging clusters or quasi-species, with diverging substrate selectivity, were identified from a GST M1/M2 library, by using directed evolution (family DNA shuffling), multiple substrate screening and multivariate statistics as tools. One of the clusters was M1-like and the other was M2-like, both functionally and structurally. The third quasi-species diverged orthogonally from the parent-like distributions. Its functional character can be referred to as a “generalist” as it had lower activities with most of the substrates assayed except for epoxy-3-(4-nitrophenoxy)-propane (EPNP) and p-nitrophenyl acetate (pNPA). Another round of family DNA shuffling was made with selected variants from the “generalist” quasi-species. From the second generation three quasi-species emerged with diverging functions and sequences. The major cluster contained enzyme variants that represented a direct propagation of the generalists. Diverging from the generalists was a cluster with high specificity with isothiocyanates (ITCs). Increased ITC specificity and decreased epoxide specificity was observed among the novel variants (specialists). The change in functional properties was attributed to a Tyr116His substitution in the active site. These results demonstrate the usefulness of multivariate analysis in the quest for novel enzyme quasi-species in a multi-substrate space, and how minimal changes in the active site can generate distinctive functional properties. An application of our method could be identification of enzyme quasi-species that have lost their sensitivity with alternative inhibitors.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view