SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Martínez Serrano Alberto) "

Search: WFRF:(Martínez Serrano Alberto)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Cunha, André B., et al. (author)
  • Development of a Smart Wireless Multisensor Platform for an Optogenetic Brain Implant
  • 2024
  • In: Sensors. - 1424-8220. ; 24:2
  • Journal article (peer-reviewed)abstract
    • Implantable cell replacement therapies promise to completely restore the function of neural structures, possibly changing how we currently perceive the onset of neurodegenerative diseases. One of the major clinical hurdles for the routine implementation of stem cell therapies is poor cell retention and survival, demanding the need to better understand these mechanisms while providing precise and scalable approaches to monitor these cell-based therapies in both pre-clinical and clinical scenarios. This poses significant multidisciplinary challenges regarding planning, defining the methodology and requirements, prototyping and different stages of testing. Aiming toward an optogenetic neural stem cell implant controlled by a smart wireless electronic frontend, we show how an iterative development methodology coupled with a modular design philosophy can mitigate some of these challenges. In this study, we present a miniaturized, wireless-controlled, modular multisensor platform with fully interfaced electronics featuring three different modules: an impedance analyzer, a potentiostat and an optical stimulator. We show the application of the platform for electrical impedance spectroscopy-based cell monitoring, optical stimulation to induce dopamine release from optogenetically modified neurons and a potentiostat for cyclic voltammetry and amperometric detection of dopamine release. The multisensor platform is designed to be used as an opto-electric headstage for future in vivo animal experiments.
  •  
3.
  • Kajtez, Janko, et al. (author)
  • 3D-Printed Soft Lithography for Complex Compartmentalized Microfluidic Neural Devices
  • 2020
  • In: Advanced Science. - : Wiley. - 2198-3844. ; 7:16
  • Journal article (peer-reviewed)abstract
    • Compartmentalized microfluidic platforms are an invaluable tool in neuroscience research. However, harnessing the full potential of this technology remains hindered by the lack of a simple fabrication approach for the creation of intricate device architectures with high-aspect ratio features. Here, a hybrid additive manufacturing approach is presented for the fabrication of open-well compartmentalized neural devices that provides larger freedom of device design, removes the need for manual postprocessing, and allows an increase in the biocompatibility of the system. Suitability of the method for multimaterial integration allows to tailor the device architecture for the long-term maintenance of healthy human stem-cell derived neurons and astrocytes, spanning at least 40 days. Leveraging fast-prototyping capabilities at both micro and macroscale, a proof-of-principle human in vitro model of the nigrostriatal pathway is created. By presenting a route for novel materials and unique architectures in microfluidic systems, the method provides new possibilities in biological research beyond neuroscience applications.
  •  
4.
  • Kajtez, Janko, et al. (author)
  • Embedded 3D Printing in Self-Healing Annealable Composites for Precise Patterning of Functionally Mature Human Neural Constructs
  • 2022
  • In: Advanced science (Weinheim, Baden-Wurttemberg, Germany). - : Wiley. - 2198-3844. ; 9:25
  • Journal article (peer-reviewed)abstract
    • Human in vitro models of neural tissue with tunable microenvironment and defined spatial arrangement are needed to facilitate studies of brain development and disease. Towards this end, embedded printing inside granular gels holds great promise as it allows precise patterning of extremely soft tissue constructs. However, granular printing support formulations are restricted to only a handful of materials. Therefore, there has been a need for novel materials that take advantage of versatile biomimicry of bulk hydrogels while providing high-fidelity support for embedded printing akin to granular gels. To address this need, Authors present a modular platform for bioengineering of neuronal networks via direct embedded 3D printing of human stem cells inside Self-Healing Annealable Particle-Extracellular matrix (SHAPE) composites. SHAPE composites consist of soft microgels immersed in viscous extracellular-matrix solution to enable precise and programmable patterning of human stem cells and consequent generation mature subtype-specific neurons that extend projections into the volume of the annealed support. The developed approach further allows multi-ink deposition, live spatial and temporal monitoring of oxygen levels, as well as creation of vascular-like channels. Due to its modularity and versatility, SHAPE biomanufacturing toolbox has potential to be used in applications beyond functional modeling of mechanically sensitive neural constructs.
  •  
5.
  • Martínez-Serrano, Alberto, et al. (author)
  • Short-term grafting of human neural stem cells : Electrophysiological properties and motor behavioral amelioration in experimental Parkinson’s disease
  • 2016
  • In: Cell Transplantation. - 0963-6897. ; 25:12, s. 2083-2097
  • Journal article (peer-reviewed)abstract
    • Cell replacement therapy in Parkinson’s disease (PD) still lacks a study addressing the acquisition of electrophysiological properties of human grafted neural stem cells and their relation with the emergence of behavioral recovery after transplantation in the short term. Here we study the electrophysiological and biochemical profiles of two ventral mesencephalic human neural stem cell (NSC) clonal lines (C30-Bcl-XL and C32-Bcl-XL) that express high levels of Bcl-XL to enhance their neurogenic capacity, after grafting in an in vitro parkinsonian model. Electrophysiological recordings show that the majority of the cells derived from the transplants are not mature at 6 weeks after grafting, but 6.7% of the studied cells showed mature electrophysiological profiles. Nevertheless, parallel in vivo behavioral studies showed a significant motor improvement at 7 weeks postgrafting in the animals receiving C30-Bcl-XL, the cell line producing the highest amount of TH+ cells. Present results show that, at this postgrafting time point, behavioral amelioration highly correlates with the spatial dispersion of the TH+ grafted cells in the caudate putamen. The spatial dispersion, along with a high number of dopaminergic-derived cells, is crucial for behavioral improvements. Our findings have implications for long-term standardization of stem cell-based approaches in Parkinson’s disease.
  •  
6.
  • Philips, Matthew F., et al. (author)
  • Neuroprotective and behavioral efficacy of nerve growth factor-transfected hippocampal progenitor cell transplants after experimental traumatic brain injury
  • 2001
  • In: Journal of Neurosurgery. - 0022-3085. ; 94:5, s. 765-765
  • Journal article (peer-reviewed)abstract
    • OBJECT: Immortalized neural progenitor cells derived from embryonic rat hippocampus (HiB5), were transduced ex vivo with the gene for mouse nerve growth factor (NGF) to secrete NGF (NGF-HiB5) at 2 ng/hr/10(5) cells in culture. METHODS: Fifty-nine male Wistar rats weighing 300 to 370 g each were anesthetized with 60 mg/kg sodium pentobarbital and subjected to lateral fluid-percussion brain injury of moderate severity (2.3-2.4 atm, 34 rats) or sham injury (25 rats). At 24 hours postinjury, 2 microl (150,000 cells/microl) of [3H]thymidine-labeled NGF-HiB5 cells were transplanted stereotactically into three individual sites in the cerebral cortex adjacent to the injury site (14 rats). Separate groups of brain-injured rats received nontransfected (naive [n])-HiB5 cells (12 animals) or cell suspension vehicle (eight animals). One week postinjury, animals underwent neurological evaluation for motor function and cognition (Morris water maze) and were killed for histological, autoradiographic, and immunocytochemical analysis. Viable HiB5 cell grafts were identified in all animals, together with reactive microglia and macrophages located throughout the periinjured parenchyma and grafts (OX-42 immunohistochemistry). Brain-injured animals transplanted with either NGF-HiB5 or n-HiB5 cells displayed significantly improved neuromotor function (p < 0.05) and spatial learning behavior (p < 0.005) compared with brain-injured animals receiving microinjections of vehicle alone. A significant reduction in hippocampal CA3 cell death was observed in brain-injured animals receiving transplants of NGF-HiB5 cells compared with those receiving n-HiB5 cells or vehicle (p < 0.025). CONCLUSIONS: This study demonstrates that immortalized neural stem cells that have been retrovirally transduced to produce NGF can markedly improve cognitive and neuromotor function and rescue hippocampal CA3 neurons when transplanted into the injured brain during the acute posttraumatic period.
  •  
7.
  • Seiz, Emma G., et al. (author)
  • Human midbrain precursors activate the expected developmental genetic program and differentiate long-term to functional A9 dopamine neurons in vitro. Enhancement by Bcl-X-L
  • 2012
  • In: Experimental Cell Research. - : Elsevier BV. - 1090-2422 .- 0014-4827. ; 318:19, s. 2446-2459
  • Journal article (peer-reviewed)abstract
    • Understanding the molecular programs of the generation of human dopaminergic neurons (DAn) from their ventral mesencephalic (VM) precursors is of key importance for basic studies, progress in cell therapy, drug screening and pharmacology in the context of Parkinson's disease. The nature of human DAn precursors in vitro is poorly understood, their properties unstable, and their availability highly limited. Here we present positive evidence that human VM precursors retaining their genuine properties and long-term capacity to generate A9 type Substantia nigra human DAn (hVM1 model cell line) can be propagated in culture. During a one month differentiation, these cells activate all key genes needed to progress from pro-neural and pro-dopaminergic precursors to mature and functional DAn. For the first time, we demonstrate that gene cascades are correctly activated during differentiation, resulting in the generation of mature DAn. These DAn have morphological and functional properties undistinguishable from those generated by VM primary neuronal cultures. In addition, we have found that the forced expression of Bcl-X-L induces an increase in the expression of key developmental genes (MSX1, NGN2), maintenance of PITX3 expression temporal profile, and also enhances genes involved in DAn long-term function, maintenance and survival (EN1, LMX1B, NURR1 and PITX3). As a result, Bcl-X-L anticipates and enhances DAn generation. (C) 2012 Elsevier Inc. All rights reserved.
  •  
8.
  • Simsa, Robin, et al. (author)
  • Brain organoid formation on decellularized porcine brain ECM hydrogels
  • 2021
  • In: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 16:1
  • Journal article (peer-reviewed)abstract
    • Human brain tissue models such as cerebral organoids are essential tools for developmental and biomedical research. Current methods to generate cerebral organoids often utilize Matrigel as an external scaffold to provide structure and biologically relevant signals. Matrigel however is a nonspecific hydrogel of mouse tumor origin and does not represent the complexity of the brain protein environment. In this study, we investigated the application of a decellularized adult porcine brain extracellular matrix (B-ECM) which could be processed into a hydrogel (B-ECM hydrogel) to be used as a scaffold for human embryonic stem cell (hESC)-derived brain organoids. We decellularized pig brains with a novel detergent- and enzyme-based method and analyzed the biomaterial properties, including protein composition and content, DNA content, mechanical characteristics, surface structure, and antigen presence. Then, we compared the growth of human brain organoid models with the B-ECM hydrogel or Matrigel controls in vitro. We found that the native brain source material was successfully decellularized with little remaining DNA content, while Mass Spectrometry (MS) showed the loss of several brain-specific proteins, while mainly different collagen types remained in the B-ECM. Rheological results revealed stable hydrogel formation, starting from B-ECM hydrogel concentrations of 5 mg/mL. hESCs cultured in B-ECM hydrogels showed gene expression and differentiation outcomes similar to those grown in Matrigel. These results indicate that B-ECM hydrogels can be used as an alternative scaffold for human cerebral organoid formation, and may be further optimized for improved organoid growth by further improving protein retention other than collagen after decellularization.
  •  
9.
  • Tønnesen, Jan, et al. (author)
  • Functional properties of the human ventral mesencephalic neural stem cell line hVM1.
  • 2010
  • In: Experimental Neurology. - : Elsevier BV. - 0014-4886. ; 223, s. 653-656
  • Journal article (peer-reviewed)abstract
    • The human fetal ventral mesencephalon-derived stem cell line, hVM1, yields high number of tyrosine hydroxylase-expressing presumed dopaminergic neurons upon in vitro differentiation. Here we report that cells generated from this line differentiate into a neuronal phenotype, express electrophysiological properties of functional neurons and respond to neurotransmitters in vitro. However, the electrophysiological properties are immature and the cells require longer maturation time than possible under in vitro conditions.
  •  
10.
  • Vasudevan, Shashank, et al. (author)
  • Leaky Optoelectrical Fiber for Optogenetic Stimulation and Electrochemical Detection of Dopamine Exocytosis from Human Dopaminergic Neurons
  • 2019
  • In: Advanced Science. - : Wiley. - 2198-3844. ; 6:24
  • Journal article (peer-reviewed)abstract
    • In Parkinson's disease, the degeneration of dopaminergic neurons in substantia nigra leads to a decrease in the physiological levels of dopamine in striatum. The existing dopaminergic therapies effectively alleviate the symptoms, albeit they do not revert the disease progression and result in significant adverse effects. Transplanting dopaminergic neurons derived from stem cells could restore dopamine levels without additional motor complications. However, the transplanted cells disperse in vivo and it is not possible to stimulate them on demand to modulate dopamine release to prevent dyskinesia. In order to address these issues, this paper presents a multifunctional leaky optoelectrical fiber for potential neuromodulation and as a cell substrate for application in combined optogenetic stem cell therapy. Pyrolytic carbon coated optical fibers are laser ablated to pattern micro-optical windows to permit light leakage over a large area. The pyrolytic carbon acts as an excellent electrode for the electrochemical detection of dopamine. Human neural stem cells are genetically modified to express the light sensitive opsin channelrhodopsin-2 and are differentiated into dopaminergic neurons on the leaky optoelectrical fiber. Finally, light leaking from the micro-optical windows is used to stimulate the dopaminergic neurons resulting in the release of dopamine that is detected in real-time using chronoamperometry.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view