SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Martikainen Miika) "

Search: WFRF:(Martikainen Miika)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Martikainen, Miika, et al. (author)
  • IFN-I-tolerant oncolytic Semliki Forest virus in combination with anti-PD1 enhances T cell response against mouse glioma
  • 2021
  • In: MOLECULAR THERAPY-ONCOLYTICS. - : Cell Press. - 2372-7705. ; 21, s. 37-46
  • Journal article (peer-reviewed)abstract
    • Oncolytic virotherapy holds promise of effective immunotherapy against otherwise nonresponsive cancers such as glioblastoma. Our previous findings have shown that although oncolytic Semliki Forest virus (SFV) is effective against various mouse glioblastoma models, its therapeutic potency is hampered by type I interferon (IFN-I)-mediated antiviral signaling. In this study, we constructed a novel IFN-I-resistant SFV construct, SFV-AM6, and evaluated its therapeutic potency in vitro, ex vivo, and in vivo in the IFN-I competent mouse GL261 glioma model. In vitro analysis shows that SFV-AM6 causes immunogenic apoptosis in GL261 cells despite high IFN-I signaling. MicroRNA-124 de-targeted SFV-AM6-124T selectively replicates in glioma cells, and it can infect orthotopic GL261 gliomas when administered intraperitoneally. The combination of SFV-AM6-124T and anti-programmed death 1 (PD1) immunotherapy resulted in increased immune cell infiltration in GL261 gliomas, including an increased tumor-reactive CD8(+) fraction. Our results show that SFV-AM6-124T can overcome hurdles of innate anti-viral signaling. Combination therapy with SFV-AM6-124T and antiPD1 promotes the inflammatory response and improves the immune microenvironment in the GL261 glioma model.
  •  
2.
  • Bulanova, Daria, et al. (author)
  • Antiviral Properties of Chemical Inhibitors of Cellular Anti-Apoptotic Bcl-2 Proteins
  • 2017
  • In: Viruses. - : MDPI AG. - 1999-4915. ; 9:10
  • Journal article (peer-reviewed)abstract
    • Viral diseases remain serious threats to public health because of the shortage of effective means of control. To combat the surge of viral diseases, new treatments are urgently needed. Here we show that small-molecules, which inhibit cellular anti-apoptotic Bcl-2 proteins (Bcl-2i), induced the premature death of cells infected with different RNA or DNA viruses, whereas, at the same concentrations, no toxicity was observed in mock-infected cells. Moreover, these compounds limited viral replication and spread. Surprisingly, Bcl-2i also induced the premature apoptosis of cells transfected with viral RNA or plasmid DNA but not of mock-transfected cells. These results suggest that Bcl-2i sensitizes cells containing foreign RNA or DNA to apoptosis. A comparison of the toxicity, antiviral activity, and side effects of six Bcl-2i allowed us to select A-1155463 as an antiviral lead candidate. Thus, our results pave the way for the further development of Bcl-2i for the prevention and treatment of viral diseases.
  •  
3.
  • Ma, Jing, et al. (author)
  • Characterization of virus-mediated immunogenic cancer cell death and the consequences for oncolytic virus-based immunotherapy of cancer
  • 2020
  • In: Cell Death and Disease. - : NATURE PUBLISHING GROUP. - 2041-4889. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Oncolytic viruses have the potential to induce immunogenic cell death (ICD) that may provoke potent and long-lasting anti-cancer immunity. Here we aimed to characterize the ICD-inducing ability of wild-type Adenovirus (Ad), Semliki Forest virus (SFV) and Vaccinia virus (VV). We did so by investigating the cell death and immune-activating properties of virus-killed tumor cells. Ad-infection of tumor cells primarily activates autophagy, but also activate events of necroptotic and pyroptotic cell death. SFV infection on the other hand primarily activates immunogenic apoptosis while VV activates necroptosis. All viruses mediated lysis of tumor cells leading to the release of danger-associated molecular patterns, triggering of phagocytosis and maturation of dendritic cells (DCs). However, only SFV-infected tumor cells triggered significant T helper type 1 (Th1)-cytokine release by DCs and induced antigen-specific T-cell activation. Our results elucidate cell death processes activated upon Ad, SFV, and VV infection and their potential to induce T cell-mediated anti-tumor immune responses. This knowledge provides important insight for the choice and design of therapeutically successful virus-based immunotherapies.
  •  
4.
  • Martikainen, Miika, et al. (author)
  • Oncolytic alphavirus SFV-VA7 efficiently eradicates subcutaneous and orthotopic human prostate tumours in mice
  • 2017
  • In: British Journal of Cancer. - : NATURE PUBLISHING GROUP. - 0007-0920 .- 1532-1827. ; 117:1, s. 51-55
  • Journal article (peer-reviewed)abstract
    • Background: Despite recent therapeutic and diagnostic advances, prostate cancer remains the second leading cause of cancer-related deaths among men in the Western world. Oncolytic viruses that replicate selectively in tumour cells represent a novel treatment candidate for these malignancies.Methods: We analysed infectivity of avirulent Semliki Firest virus SFV-VA7 in human prostate cancer cell lines VCaP, LNCaP and 22Rv1 and in nonmalignant prostate epithelial cell line RWPE-1. Therapeutic potency of SFV-VA7 was evaluated in subcutaneous and orthotopic mouse LNCaP xenograft models.Results: SFV-VA7 infected and killed the tested human prostate cancer cell lines irrespective of their hormone response status, while the nonmalignant prostate epithelial cell line RWPE-1 proved highly virus resistant. Notably, a single peritoneal dose of SFV-VA7 was sufficient to eradicate all subcutaneous and orthotopic LNCaP tumours.Conclusions: Our results indicate that SFV-VA7 is a novel, promising therapeutic virus against prostate cancer warranting further testing in early clinical trials.
  •  
5.
  • Martikainen, Miika, et al. (author)
  • Virus-Based Immunotherapy of Glioblastoma
  • 2019
  • In: Cancers. - : MDPI AG. - 2072-6694. ; 11:2
  • Research review (peer-reviewed)abstract
    • Glioblastoma (GBM) is the most common type of primary brain tumor in adults. Despite recent advances in cancer therapy, including the breakthrough of immunotherapy, the prognosis of GBM patients remains dismal. One of the new promising ways to therapeutically tackle the immunosuppressive GBM microenvironment is the use of engineered viruses that kill tumor cells via direct oncolysis and via stimulation of antitumor immune responses. In this review, we focus on recently published results of phase I/II clinical trials with different oncolytic viruses and the new interesting findings in preclinical models. From syngeneic preclinical GBM models, it seems evident that oncolytic virus-mediated destruction of GBM tissue coupled with strong adjuvant effect, provided by the robust stimulation of innate antiviral immune responses and adaptive anti-tumor T cell responses, can be harnessed as potent immunotherapy against GBM. Although clinical testing of oncolytic viruses against GBM is at an early stage, the promising results from these trials give hope for the effective treatment of GBM in the near future.
  •  
6.
  • Niittykoski, Minna, et al. (author)
  • Immunohistochemical Characterization and Sensitivity to Human Adenovirus Serotypes 3, 5, and 11p of New Cell Lines Derived from Human Diffuse Grade II to IV Gliomas
  • 2017
  • In: Translational Oncology. - : ELSEVIER SCIENCE INC. - 1944-7124 .- 1936-5233. ; 10:5, s. 772-779
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Oncolytic adenoviruses show promise in targeting gliomas because they do not replicate in normal brain cells. However, clinical responses occur only in a subset of patients. One explanation could be the heterogenic expression level of virus receptors. Another contributing factor could be variable activity of tumor antiviral defenses in different glioma subtypes. METHODS: We established a collection of primary low-passage cell lines from different glioma subtypes (3 glioblastomas, 3 oligoastrocytomas, and 2 oligodendrogliomas) and assessed them for receptor expression and sensitivity to human adenovirus (HAd) serotypes 3, 5, and 11p. To gauge the impact of antiviral defenses, we also compared the infectivity of the oncolytic adenoviruses in interferon (IFN)-pretreated cells with IFN-sensitive Semliki Forest virus (SFV). RESULTS: Immunostaining revealed generally low expression of HAd5 receptor CAR in both primary tumors and derived cell lines. HAd11p receptor CD46 levels were maintained at moderate levels in both primary tumor samples and derived cell lines. HAd3 receptor DSG-2 was reduced in the cell lines compared to the tumors. Yet, at equal multiplicities of infection, the oncolytic potency of HAd5 in vitro in tumor-derived cells was comparable to HAd11p, whereas HAd3 lysed fewer cells than either of the other two HAd serotypes in 72 hours. IFN blocked replication of SFV, while HAds were rather unaffected. CONCLUSIONS: Adenovirus receptor levels on glioma-derived cell lines did not correlate with infection efficacy and may not be a relevant indicator of clinical oncolytic potency. Adenovirus receptor analysis should be preferentially performed on biopsies obtained perioperatively.
  •  
7.
  • Ramachandran, Mohanraj, 1988-, et al. (author)
  • Tailoring vascular phenotype through AAV therapy promotes anti-tumor immunity in glioma
  • 2023
  • In: Cancer Cell. - : Elsevier BV. - 1535-6108 .- 1878-3686. ; 41:6, s. 1134-1151
  • Journal article (peer-reviewed)abstract
    • Glioblastomas are aggressive brain tumors that are largely immunotherapy resistant. This is associated with immunosuppression and a dysfunctional tumor vasculature, which hinder T cell infiltration. LIGHT/TNFSF14 can induce high endothelial venules (HEVs) and tertiary lymphoid structures (TLS), suggesting that its therapeutic expression could promote T cell recruitment. Here, we use a brain endothelial cell-targeted ad-eno-associated viral (AAV) vector to express LIGHT in the glioma vasculature (AAV-LIGHT). We found that systemic AAV-LIGHT treatment induces tumor-associated HEVs and T cell-rich TLS, prolonging survival in aPD-1-resistant murine glioma. AAV-LIGHT treatment reduces T cell exhaustion and promotes TCF1+CD8+ stem-like T cells, which reside in TLS and intratumoral antigen-presenting niches. Tumor regres-sion upon AAV-LIGHT therapy correlates with tumor-specific cytotoxic/memory T cell responses. Our work reveals that altering vascular phenotype through vessel-targeted expression of LIGHT promotes efficient anti-tumor T cell responses and prolongs survival in glioma. These findings have broader implications for treatment of other immunotherapy-resistant cancers.
  •  
8.
  • Sarén, Tina, et al. (author)
  • Insertion of the Type-I IFN Decoy Receptor B18R in a miRNA-Tagged Semliki Forest Virus Improves Oncolytic Capacity but Results in Neurotoxicity
  • 2017
  • In: MOLECULAR THERAPY-ONCOLYTICS. - : CELL PRESS. - 2372-7705. ; 7, s. 67-75
  • Journal article (peer-reviewed)abstract
    • Oncolytic Semliki Forest virus (SFV) has been suggested as a potential candidate for the treatment of glioblastoma and neuroblastoma. However, the oncolytic capacity of SFV is restricted by the anti-viral type-I interferon (IFN) response. The aim of this study was to increase the oncolytic capacity of a microRNA target tagged SFV against glioblastoma by arming it with the Vaccinia-virus-encoded type-I IFN decoy receptor B18R (SFV4B18RmiRT) to neutralize type-I IFN response. Expression of B18R by SFV4B18RmiRT aided neutralization of IFN-b, which was shown by reduced STAT-1 phosphorylation and improved virus spread in plaque assays. B18R expression by SFV4 increased its oncolytic capacity in vitro against murine glioblastoma (CT-2A), regardless of the presence of exogenous IFN-b. Both SFV4B18RmiRT and SFV4miRT treatments controlled tumor growth in mice with syngeneic orthotopic gliomablastoma (CT-2A). However, treatment with SFV4B18RmiRT induced severe neurological symptoms in some mice because of virus replication in the healthy brain. Neither neurotoxicity nor virus replication in the brain was observed when SFV4miRT was administered. In summary, our results indicate that the oncolytic capacity of SFV4 was improved in vitro and in vivo by incorporation of B18R, but neurotoxicity of the virus was increased, possibly due to loss of microRNA targets.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view