SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Martines J) "

Search: WFRF:(Martines J)

  • Result 1-10 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Martin, P., et al. (author)
  • Overview of the RFX-mod fusion science programme
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 53:10, s. 104018-
  • Research review (peer-reviewed)abstract
    • This paper reports the highlights of the RFX-mod fusion science programme since the last 2010 IAEA Fusion Energy Conference. The RFX-mod fusion science programme focused on two main goals: exploring the fusion potential of the reversed field pinch (RFP) magnetic configuration and contributing to the solution of key science and technology problems in the roadmap to ITER. Active control of several plasma parameters has been a key tool in this endeavour. New upgrades on the system for active control of magnetohydrodynamic (MHD) stability are underway and will be presented in this paper. Unique among the existing fusion devices, RFX-mod has been operated both as an RFP and as a tokamak. The latter operation has allowed the exploration of edge safety factor q edge < 2 with active control of MHD stability and studies concerning basic energy and flow transport mechanisms. Strong interaction has continued with the stellarator community in particular on the physics of helical states and on three-dimensional codes.
  •  
3.
  • Martin, P., et al. (author)
  • Overview of RFX-mod results
  • 2009
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 49:10, s. 104019-
  • Journal article (peer-reviewed)abstract
    • With the exploration of the MA plasma current regime in up to 0.5 s long discharges, RFX-mod has opened new and very promising perspectives for the reversed field pinch (RFP) magnetic configuration, and has made significant progress in understanding and improving confinement and in controlling plasma stability. A big leap with respect to previous knowledge and expectations on RFP physics and performance has been made by RFX-mod since the last 2006 IAEA Fusion Energy Conference. A new self-organized helical equilibrium has been experimentally achieved ( the Single Helical Axis-SHAx-state), which is the preferred state at high current. Strong core electron transport barriers characterize this regime, with electron temperature gradients comparable to those achieved in tokamaks, and by a factor of 4 improvement in confinement time with respect to the standard RFP. RFX-mod is also providing leading edge results on real-time feedback control of MHD instabilities, of general interest for the fusion community.
  •  
4.
  • Martin, P., et al. (author)
  • Overview of the RFX fusion science program
  • 2011
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 51:9, s. 094023-
  • Journal article (peer-reviewed)abstract
    • This paper summarizes the main achievements of the RFX fusion science program in the period between the 2008 and 2010 IAEA Fusion Energy Conferences. RFX-mod is the largest reversed field pinch in the world, equipped with a system of 192 coils for active control of MHD stability. The discovery and understanding of helical states with electron internal transport barriers and core electron temperature >1.5 keV significantly advances the perspectives of the configuration. Optimized experiments with plasma current up to 1.8 MA have been realized, confirming positive scaling. The first evidence of edge transport barriers is presented. Progress has been made also in the control of first-wall properties and of density profiles, with initial first-wall lithization experiments. Micro-turbulence mechanisms such as ion temperature gradient and micro-tearing are discussed in the framework of understanding gradient-driven transport in low magnetic chaos helical regimes. Both tearing mode and resistive wall mode active control have been optimized and experimental data have been used to benchmark numerical codes. The RFX programme also provides important results for the fusion community and in particular for tokamaks and stellarators on feedback control of MHD stability and on three-dimensional physics. On the latter topic, the result of the application of stellarator codes to describe three-dimensional reversed field pinch physics will be presented.
  •  
5.
  • Van Oost, G., et al. (author)
  • Turbulent transport reduction by E x B velocity shear during edge plasma biasing : recent experimental results
  • 2003
  • In: Plasma Physics and Controlled Fusion. - 0741-3335 .- 1361-6587. ; 45:5, s. 621-643
  • Journal article (peer-reviewed)abstract
    • Experiments in the tokamaks TEXTOR, CASTOR, T-10 and ISTTOK, as well as in the reversed field pinch RFX have provided new and complementary evidence on the physics of the universal mechanism of E x B velocity shear stabilization of turbulence, concomitant transport barrier formation and radial conductivity by using various edge biasing techniques. In TEXTOR the causality between transport reduction and induced electric fields in the edge has been for the first time clearly demonstrated. The high electric field gradients have been identified as the cause for the quenching of turbulent cells. A quantitative analysis of the measured transport reduction is in good agreement with theoretical predictions. The scaling of plasma turbulence suppression with velocity shear has been established, revealing the density-potential cross-phase as a key element. Reduction in poloidal electric field, temperature, and density fluctuations across the shear layer lead to a reduction of the anomalous conducted and convected heat fluxes resulting in an energy transport barrier that is measured directly. In CASTOR the biasing electrode is placed at the separatrix in a non-intrusive configuration which has demonstrated strongly sheared electric fields and consequent improvement of the global particle confinement, as predicted by theory. The impact of sheared E x B flow on edge turbulent structures has been measured directly using a comprehensive set of electrostatic probe arrays as well as emissive probes. Measurements with a full poloidal Langmuir probe array have revealed quasi-coherent electrostatic waves in the SOL with a dominant mode number equal to the edge safety factor. In T-10 edge biasing is clearly improving the global performance of ECR heated discharges. Reflectometry and heavy ion beam probe measurements show the existence of a narrow plasma layer with strong suppression of turbulence. On ISTTOK, the influence of alternating positive and negative electrode and (non-intrusive) limiter biasing has been compared. Electrode biasing is found to be more efficient in modifying the radial electric field E, and confinement, limiter biasing acting mainly on the SOL. In the RFX reversed field pinch it has been demonstrated that also in RFPs biasing can increase the local E x B velocity shear in the edge region, and hence substantially reduce the local turbulence driven particle flux mainly due to a change in the relative phase between potential and density fluctuations.
  •  
6.
  • Zuin, M., et al. (author)
  • Overview of the RFX-mod fusion science activity
  • 2017
  • In: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 57:10
  • Journal article (peer-reviewed)abstract
    • This paper reports the main recent results of the RFX-mod fusion science activity. The RFX-mod device is characterized by a unique flexibility in terms of accessible magnetic configurations. Axisymmetric and helically shaped reversed-field pinch equilibria have been studied, along with tokamak plasmas in a wide range of q(a) regimes (spanning from 4 down to 1.2 values). The full range of magnetic configurations in between the two, the so-called ultra-low q ones, has been explored, with the aim of studying specific physical issues common to all equilibria, such as, for example, the density limit phenomenon. The powerful RFX-mod feedback control system has been exploited for MHD control, which allowed us to extend the range of experimental parameters, as well as to induce specific magnetic perturbations for the study of 3D effects. In particular, transport, edge and isotope effects in 3D equilibria have been investigated, along with runaway mitigations through induced magnetic perturbations. The first transitions to an improved confinement scenario in circular and D-shaped tokamak plasmas have been obtained thanks to an active modification of the edge electric field through a polarized electrode. The experiments are supported by intense modeling with 3D MHD, gyrokinetic, guiding center and transport codes. Proposed modifications to the RFX-mod device, which will enable further contributions to the solution of key issues in the roadmap to ITER and DEMO, are also briefly presented.
  •  
7.
  • Lorenzini, R., et al. (author)
  • Self-organized helical equilibria as a new paradigm for ohmically heated fusion plasmas
  • 2009
  • In: Nature Physics. - : Springer Science and Business Media LLC. - 1745-2473 .- 1745-2481. ; 5:8, s. 570-574
  • Journal article (peer-reviewed)abstract
    • In the quest for new energy sources, the research on controlled thermonuclear fusion has been boosted by the start of the construction phase of the International Thermonuclear Experimental Reactor (ITER). ITER is based on the tokamak magnetic configuration, which is the best performing one in terms of energy confinement. Alternative concepts are however actively researched, which in the long term could be considered for a second generation of reactors. Here, we show results concerning one of these configurations, the reversed-field pinch (RFP). By increasing the plasma current, a spontaneous transition to a helical equilibrium occurs, with a change of magnetic topology. Partially conserved magnetic flux surfaces emerge within residual magnetic chaos, resulting in the onset of a transport barrier. This is a structural change and sheds new light on the potential of the RFP as the basis for a low-magnetic-field ohmic fusion reactor.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view