SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Martinez Rau Luciano) "

Search: WFRF:(Martinez Rau Luciano)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chelotti, J. O., et al. (author)
  • Livestock feeding behaviour : A review on automated systems for ruminant monitoring
  • 2024
  • In: Biosystems Engineering. - : Elsevier BV. - 1537-5110 .- 1537-5129. ; 246, s. 150-177
  • Research review (peer-reviewed)abstract
    • Livestock feeding behaviour is an influential research area in animal husbandry and agriculture. In recent years, there has been a growing interest in automated systems for monitoring the behaviour of ruminants. Current automated monitoring systems mainly use motion, acoustic, pressure and image sensors to collect and analyse patterns related to ingestive behaviour, foraging activities and daily intake. The performance evaluation of existing methods is a complex task and direct comparisons between studies is difficult. Several factors prevent a direct comparison, starting from the diversity of data and performance metrics used in the experiments. This review on the analysis of the feeding behaviour of ruminants emphasise the relationship between sensing methodologies, signal processing, and computational intelligence methods. It assesses the main sensing methodologies and the main techniques to analyse the signals associated with feeding behaviour, evaluating their use in different settings and situations. It also highlights the potential of the valuable information provided by automated monitoring systems to expand knowledge in the field, positively impacting production systems and research. The paper closes by discussing future engineering challenges and opportunities in livestock feeding behaviour monitoring. 
  •  
2.
  • Martinez Rau, Luciano, et al. (author)
  • On-Device Feeding Behavior Analysis of Grazing Cattle
  • 2024
  • In: IEEE Transactions on Instrumentation and Measurement. - : Institute of Electrical and Electronics Engineers (IEEE). - 0018-9456 .- 1557-9662. ; 73
  • Journal article (peer-reviewed)abstract
    • Precision livestock farming (PLF) leverages cutting-edge technologies and data-driven solutions to enhance the efficiency of livestock production, its associated management, and its welfare. Continuous monitoring of the masticatory sound of cattle allows the estimation of dry-matter intake, classification of jaw movements (JMs), and recognition of grazing and rumination bouts. Over the past two decades, algorithms for analyzing feeding sounds have seen improvements in performance and computational requirements. Nevertheless, in some cases, these algorithms have been implemented on resource-constrained electronic devices, limiting their functionality to one specific task: either classifying JMs or recognizing feeding activities (such as grazing and rumination). In this work, we present an acoustic monitoring system that comprehensively analyzes grazing cattle's feeding behavior at multiple scales. This embedded system classifies different types of JMs, identifies feeding activities, and provides predictor variables for estimating dry-matter intake. Results are transmitted remotely to a base station using long-range communication (LoRa). Two variants of the system have been deployed on a Raspberry Pi Pico board, based on a low-power ARM Cortex-M0+ microcontroller. Both firmware versions make use of direct access memory, sleep mode, and clock-gating techniques to minimize energy consumption. In laboratory experiments, the first deployment consumes 20.1 mW and achieves an F1-score of 87.3% for the classification of JMs and 87.0% for feeding activities. The second deployment consumes 19.1 mW and reaches an F1-score of 84.1% for JMs and 83.5% for feeding activities. The modular design of the proposed embedded monitoring system facilitates integration with energy-harvesting power sources for autonomous operation in field conditions.
  •  
3.
  • Martinez Rau, Luciano, et al. (author)
  • Real-Time Acoustic Monitoring of Foraging Behavior of Grazing Cattle Using Low-Power Embedded Devices
  • 2023
  • In: 2023 IEEE Sensors Applications Symposium (SAS). - : IEEE conference proceedings. - 9798350323078
  • Conference paper (peer-reviewed)abstract
    • Precision livestock farming allows farmers to optimize herd management while significantly reducing labor needs. Individualized monitoring of cattle feeding behavior offers valuable data to assess animal performance and provides valuable insights into animal welfare. Current acoustic foraging activity recognizers achieve high recognition rates operating on computers. However, their implementations on portable embedded systems (for use on farms) need further investigation. This work presents two embedded deployments of a state-of-the-art foraging activity recognizer on a low-power ARM Cortex-M0+ microcontroller. The parameters of the algorithm were optimized to reduce power consumption. The embedded algorithm processes masticatory sounds in real-time and uses machine-learning techniques to identify grazing, rumination and other activities. The overall classification performance of the two embedded deployments achieves an 84% and 89% balanced accuracy with a mean power consumption of 1.8 mW and 12.7 mW, respectively. These results will allow this deployment to be integrated into a self-powered acoustic sensor with wireless communication to operate autonomously on cattle. 
  •  
4.
  • Martinez Rau, Luciano S., et al. (author)
  • Daylong acoustic recordings of grazing and rumination activities in dairy cows
  • 2023
  • In: Scientific Data. - : Springer Nature. - 2052-4463. ; 10:1
  • Journal article (peer-reviewed)abstract
    • Monitoring livestock feeding behavior may help assess animal welfare and nutritional status, and to optimize pasture management. The need for continuous and sustained monitoring requires the use of automatic techniques based on the acquisition and analysis of sensor data. This work describes an open dataset of acoustic recordings of the foraging behavior of dairy cows. The dataset includes 708 h of daily records obtained using unobtrusive and non-invasive instrumentation mounted on five lactating multiparous Holstein cows continuously monitored for six non-consecutive days in pasture and barn. Labeled recordings precisely delimiting grazing and rumination bouts are provided for a total of 392 h and for over 6,200 ingestive and rumination jaw movements. Companion information on the audio recording quality and expert-generated labels is also provided to facilitate data interpretation and analysis. This comprehensive dataset is a useful resource for studies aimed at exploring new tools and solutions for precision livestock farming. 
  •  
5.
  • Muthumala, Uditha, et al. (author)
  • Comparison of Tiny Machine Learning Techniques for Embedded Acoustic Emission Analysis
  • Other publication (other academic/artistic)abstract
    • This paper compares machine learning approaches with different input data formats for the classification of acoustic emission (AE) signals. AE signals are a promising monitoring technique in many structural health monitoring applications. Machine learning has been demonstrated as an effective data analysis method, classifying different AE signals according to the damage mechanism they represent. These classifications can be performed based on the entire AE waveform or specific features that have been extracted from it. However, it is currently unknown which of these approaches is preferred. With the goal of model deployment on resource-constrained embedded Internet of Things (IoT) systems, this work evaluates and compares both approaches in terms of classification accuracy, memory requirement, processing time, and energy consumption. To accomplish this, features are extracted and carefully selected, neural network models are designed and optimized for each input data scenario, and the models are deployed on a low-power IoT node. The comparative analysis reveals that all models can achieve high classification accuracies of over 99\%, but that embedded feature extraction is computationally expensive. Consequently, models utilizing the raw AE signal as input have the fastest processing speed and thus the lowest energy consumption, which comes at the cost of a larger memory requirement.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view