SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Matthaeus W.) "

Search: WFRF:(Matthaeus W.)

  • Result 1-10 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chasapis, A., et al. (author)
  • Electron Heating at Kinetic Scales in Magnetosheath Turbulence
  • 2017
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 836:2
  • Journal article (peer-reviewed)abstract
    • We present a statistical study of coherent structures at kinetic scales, using data from the Magnetospheric Multiscale mission in the Earth's magnetosheath. We implemented the multi-spacecraft partial variance of increments (PVI) technique to detect these structures, which are associated with intermittency at kinetic scales. We examine the properties of the electron heating occurring within such structures. We find that, statistically, structures with a high PVI index are regions of significant electron heating. We also focus on one such structure, a current sheet, which shows some signatures consistent with magnetic reconnection. Strong parallel electron heating coincides with whistler emissions at the edges of the current sheet.
  •  
2.
  • Chasapis, A., et al. (author)
  • In Situ Observation of Intermittent Dissipation at Kinetic Scales in the Earth's Magnetosheath
  • 2018
  • In: Astrophysical Journal Letters. - : Institute of Physics Publishing. - 2041-8205 .- 2041-8213. ; 856:1
  • Journal article (peer-reviewed)abstract
    • We present a study of signatures of energy dissipation at kinetic scales in plasma turbulence based on observations by the Magnetospheric Multiscale mission (MMS) in the Earth's magnetosheath. Using several intervals, and taking advantage of the high-resolution instrumentation on board MMS, we compute and discuss several statistical measures of coherent structures and heating associated with electrons, at previously unattainable scales in space and time. We use the multi-spacecraft Partial Variance of Increments (PVI) technique to study the intermittent structure of the magnetic field. Furthermore, we examine a measure of dissipation and its behavior with respect to the PVI as well as the current density. Additionally, we analyze the evolution of the anisotropic electron temperature and non-Maxwellian features of the particle distribution function. From these diagnostics emerges strong statistical evidence that electrons are preferentially heated in subproton-scale regions of strong electric current density, and this heating is preferentially in the parallel direction relative to the local magnetic field. Accordingly, the conversion of magnetic energy into electron kinetic energy occurs more strongly in regions of stronger current density, a finding consistent with several kinetic plasma simulation studies and hinted at by prior studies using lower resolution Cluster observations.
  •  
3.
  • Ergun, R. E., et al. (author)
  • Magnetic Reconnection, Turbulence, and Particle Acceleration : Observations in the Earth's Magnetotail
  • 2018
  • In: Geophysical Research Letters. - : Blackwell Publishing Ltd. - 0094-8276 .- 1944-8007. ; 45:8, s. 3338-3347
  • Journal article (peer-reviewed)abstract
    • We report observations of turbulent dissipation and particle acceleration from large-amplitude electric fields (E) associated with strong magnetic field (B) fluctuations in the Earth's plasma sheet. The turbulence occurs in a region of depleted density with anti-earthward flows followed by earthward flows suggesting ongoing magnetic reconnection. In the turbulent region, ions and electrons have a significant increase in energy, occasionally >100 keV, and strong variation. There are numerous occurrences of |E| >100 mV/m including occurrences of large potentials (>1 kV) parallel to B and occurrences with extraordinarily large J · E (J is current density). In this event, we find that the perpendicular contribution of J · E with frequencies near or below the ion cyclotron frequency (fci) provide the majority net positive J · E. Large-amplitude parallel E events with frequencies above fci to several times the lower hybrid frequency provide significant dissipation and can result in energetic electron acceleration.
  •  
4.
  • Ainsbury, Elizabeth, et al. (author)
  • Integration of new biological and physical retrospective dosimetry methods into EU emergency response plans - joint RENEB and EURADOS inter-laboratory comparisons
  • 2017
  • In: International Journal of Radiation Biology. - : Informa UK Limited. - 0955-3002 .- 1362-3095. ; 93:1, s. 99-109
  • Journal article (peer-reviewed)abstract
    • Purpose: RENEB, 'Realising the European Network of Biodosimetry and Physical Retrospective Dosimetry,' is a network for research and emergency response mutual assistance in biodosimetry within the EU. Within this extremely active network, a number of new dosimetry methods have recently been proposed or developed. There is a requirement to test and/or validate these candidate techniques and inter-comparison exercises are a well-established method for such validation. Materials and methods: The authors present details of inter-comparisons of four such new methods: dicentric chromosome analysis including telomere and centromere staining; the gene expression assay carried out in whole blood; Raman spectroscopy on blood lymphocytes, and detection of radiation induced thermoluminescent signals in glass screens taken from mobile phones. Results: In general the results show good agreement between the laboratories and methods within the expected levels of uncertainty, and thus demonstrate that there is a lot of potential for each of the candidate techniques. Conclusions: Further work is required before the new methods can be included within the suite of reliable dosimetry methods for use by RENEB partners and others in routine and emergency response scenarios.
  •  
5.
  • Golubic, Rajna, et al. (author)
  • Validity of Electronically Administered Recent Physical Activity Questionnaire (RPAQ) in Ten European Countries
  • 2014
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:3, s. e92829-
  • Journal article (peer-reviewed)abstract
    • Objective: To examine the validity of the Recent Physical Activity Questionnaire (RPAQ) which assesses physical activity (PA) in 4 domains (leisure, work, commuting, home) during past month. Methods: 580 men and 1343 women from 10 European countries attended 2 visits at which PA energy expenditure (PAEE), time at moderate-to-vigorous PA (MVPA) and sedentary time were measured using individually-calibrated combined heart-rate and movement sensing. At the second visit, RPAQ was administered electronically. Validity was assessed using agreement analysis. Results: RPAQ significantly underestimated PAEE in women [median(IQR) 34.1 (22.1, 52.2) vs. 40.6 (32.4, 50.9) kJ/kg/day, 95%LoA: -44.4, 63.4 kJ/kg/day) and in men (43.7 (29.0, 69.0) vs. 45.5 (34.1, 57.6) kJ/kg/day, 95%LoA: -47.2, 101.3 kJ/kg/day]. Using individualised definition of 1MET, RPAQ significantly underestimated MVPA in women [median(IQR): 62.1 (29.4, 124.3) vs. 73.6 (47.8, 107.2) min/day, 95%LoA: -130.5, 305.3 min/day] and men [82.7 (38.8, 185.6) vs. 83.3 (55.1, 125.0) min/day, 95%LoA: -136.4, 400.1 min/day]. Correlations (95%CI) between subjective and objective estimates were statistically significant [PAEE: women, rho = 0.20 (0.15-0.26); men, rho = 0.37 (0.30-0.44); MVPA: women, rho = 0.18 (0.13-0.23); men, rho = 0.31 (0.24-0.39)]. When using non-individualised definition of 1MET (3.5 mlO(2)/kg/min), MVPA was substantially overestimated (similar to 30 min/day). Revisiting occupational intensity assumptions in questionnaire estimation algorithms with occupational group-level empirical distributions reduced median PAEE-bias in manual (25.1 kJ/kg/day vs. 29.0 kJ/kg/day, p<0.001) and heavy manual workers (64.1 vs. -4.6 kJ/kg/day, p<0.001) in an independent hold-out sample. Conclusion: Relative validity of RPAQ-derived PAEE and MVPA is comparable to previous studies but underestimation of PAEE is smaller. Electronic RPAQ may be used in large-scale epidemiological studies including surveys, providing information on all domains of PA.
  •  
6.
  • Graham, Daniel B., et al. (author)
  • Non-Maxwellianity of Electron Distributions Near Earth's Magnetopause
  • 2021
  • In: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 126:10
  • Journal article (peer-reviewed)abstract
    • Plasmas in Earth's outer magnetosphere, magnetosheath, and solar wind are essentially collisionless. This means particle distributions are not typically in thermodynamic equilibrium and deviate significantly from Maxwellian distributions. The deviations of these distributions can be further enhanced by plasma processes, such as shocks, turbulence, and magnetic reconnection. Such distributions can be unstable to a wide variety of kinetic plasma instabilities, which in turn modify the electron distributions. In this paper, the deviation of the observed electron distributions from a bi-Maxwellian distribution function is calculated and quantified using data from the Magnetospheric Multiscale spacecraft. A statistical study from tens of millions of electron distributions shows that the primary source of the observed non-Maxwellianity is electron distributions consisting of distinct hot and cold components in Earth's low-density magnetosphere. This results in large non-Maxwellianities at low densities. However, after performing a statistical study we find regions where large non-Maxwellianities are observed for a given density. Highly non-Maxwellian distributions are routinely found at Earth's bowshock, in Earth's outer magnetosphere and in the electron diffusion regions of magnetic reconnection. Enhanced non-Maxwellianities are observed in the turbulent magnetosheath, but are intermittent and are typically not correlated with local processes. The causes of enhanced non-Maxwellianities are investigated.
  •  
7.
  • Miesch, M., et al. (author)
  • Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Heliophysics and Astrophysics
  • 2015
  • In: Space Science Reviews. - : Springer Netherlands. - 0038-6308 .- 1572-9672.
  • Journal article (peer-reviewed)abstract
    • We live in an age in which high-performance computing is transforming the way we do science. Previously intractable problems are now becoming accessible by means of increasingly realistic numerical simulations. One of the most enduring and most challenging of these problems is turbulence. Yet, despite these advances, the extreme parameter regimes encountered in space physics and astrophysics (as in atmospheric and oceanic physics) still preclude direct numerical simulation. Numerical models must take a Large Eddy Simulation (LES) approach, explicitly computing only a fraction of the active dynamical scales. The success of such an approach hinges on how well the model can represent the subgrid-scales (SGS) that are not explicitly resolved. In addition to the parameter regime, heliophysical and astrophysical applications must also face an equally daunting challenge: magnetism. The presence of magnetic fields in a turbulent, electrically conducting fluid flow can dramatically alter the coupling between large and small scales, with potentially profound implications for LES/SGS modeling. In this review article, we summarize the state of the art in LES modeling of turbulent magnetohydrodynamic (MHD) flows. After discussing the nature of MHD turbulence and the small-scale processes that give rise to energy dissipation, plasma heating, and magnetic reconnection, we consider how these processes may best be captured within an LES/SGS framework. We then consider several specific applications in heliophysics and astrophysics, assessing triumphs, challenges, and future directions.
  •  
8.
  • Osman, K. T., et al. (author)
  • Multi-Spacecraft Measurement Of Turbulence Within A Magnetic Reconnection Jet
  • 2015
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 815:2
  • Journal article (peer-reviewed)abstract
    • The relationship between magnetic reconnection and plasma turbulence is investigated using multipoint in situ measurements from the Cluster spacecraft within a high-speed reconnection jet in the terrestrial magnetotail. We show explicitly that work done by electromagnetic fields on the particles, J . E, has a non-Gaussian distribution and is concentrated in regions of high electric current density. Hence, magnetic energy is converted to kinetic energy in an intermittent manner. Furthermore, we find that the higher-order statistics of magnetic field fluctuations generated by reconnection are characterized by multifractal scaling on magnetofluid scales and non-Gaussian global scale invariance on kinetic scales. These observations suggest that J . E within the reconnection jet has an analog in fluid-like turbulence theory in that it proceeds via coherent structures generated by an intermittent cascade. This supports the hypothesis that turbulent dissipation is highly nonuniform, and thus these results could have far reaching implications for space and astrophysical plasmas.
  •  
9.
  • Pezzi, O., et al. (author)
  • Dissipation measures in weakly collisional plasmas
  • 2021
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 505:4, s. 4857-4873
  • Journal article (peer-reviewed)abstract
    • The physical foundations of the dissipation of energy and the associated heating in weakly collisional plasmas are poorly understood. Here, we compare and contrast several measures that have been used to characterize energy dissipation and kinetic-scale conversion in plasmas by means of a suite of kinetic numerical simulations describing both magnetic reconnection and decaying plasma turbulence. We adopt three different numerical codes that can also include interparticle collisions: the fully kinetic particle-in-cell VPIC, the fully kinetic continuum Gkeyll, and the Eulerian Hybrid Vlasov-Maxwell (HVM) code. We differentiate between (i) four energy-based parameters, whose definition is related to energy transfer in a fluid description of a plasma, and (ii) four distribution function-based parameters, requiring knowledge of the particle velocity distribution function. There is an overall agreement between the dissipation measures obtained in the PIC and continuum reconnection simulations, with slight differences due to the presence/absence of secondary islands in the two simulations. There are also many qualitative similarities between the signatures in the reconnection simulations and the self-consistent current sheets that form in turbulence, although the latter exhibits significant variations compared to the reconnection results. All the parameters confirm that dissipation occurs close to regions of intense magnetic stresses, thus exhibiting local correlation. The distribution function-based measures show a broader width compared to energy-based proxies, suggesting that energy transfer is co-localized at coherent structures, but can affect the particle distribution function in wider regions. The effect of interparticle collisions on these parameters is finally discussed.
  •  
10.
  • Pezzi, O., et al. (author)
  • Turbulence and particle energization in twisted flux ropes under solar-wind conditions
  • 2024
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 686
  • Journal article (peer-reviewed)abstract
    • Context. The mechanisms regulating the transport and energization of charged particles in space and astrophysical plasmas are still debated. Plasma turbulence is known to be a powerful particle accelerator. Large-scale structures, including flux ropes and plasmoids, may contribute to confining particles and lead to fast particle energization. These structures may also modify the properties of the turbulent, nonlinear transfer across scales. Aims. We aim to investigate how large-scale flux ropes are perturbed and, simultaneously, how they influence the nonlinear transfer of turbulent energy toward smaller scales. We then intend to address how these structures affect particle transport and energization. Methods. We adopted magnetohydrodynamic simulations perturbing a large-scale flux rope in solar-wind conditions and possibly triggering turbulence. Then, we employed test-particle methods to investigate particle transport and energization in the perturbed flux rope. Results. The large-scale helical flux rope inhibits the turbulent cascade toward smaller scales, especially if the amplitude of the initial perturbations is not large (∼5%). In this case, particle transport is inhibited inside the structure. Fast particle acceleration occurs in association with phases of trapped motion within the large-scale flux rope.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view