SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Matthews Blake) "

Search: WFRF:(Matthews Blake)

  • Result 1-10 of 18
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Arnegard, Matthew E., et al. (author)
  • Genetics of ecological divergence during speciation
  • 2014
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 511:7509, s. 307-311
  • Journal article (peer-reviewed)abstract
    • Ecological differences often evolve early in speciation as divergent natural selection drives adaptation to distinct ecological niches, leading ultimately to reproductive isolation. Although this process is a major generator of biodiversity, its genetic basis is still poorly understood. Here we investigate the genetic architecture of niche differentiation in a sympatric species pair of threespine stickleback fish by mapping the environment-dependent effects of phenotypic traits on hybrid feeding and performance under semi-natural conditions. We show that multiple, unlinked loci act largely additively to determine position along the major niche axis separating these recently diverged species. We also find that functional mismatch between phenotypic traits reduces the growth of some stickleback hybrids beyond that expected from an intermediate phenotype, suggesting a role for epistasis between the underlying genes. This functional mismatch might lead to hybrid incompatibilities that are analogous to those underlying intrinsic reproductive isolation but depend on the ecological context.
  •  
3.
  • Chaguaceda, Fernando (author)
  • Bottom-up and top-down regulation of heterogeneous lake food webs
  • 2020
  • Doctoral thesis (other academic/artistic)abstract
    • Food webs are networks of organisms linked by trophic interactions that regulate the responses of ecosystems to environmental change. Such regulation is a result of the effects of resources on the abundance of their consumers (i.e. bottom-up effects) and/or the influence of consumers on the abundance of their resources (i.e. top-down effects). Lake food webs comprise pelagic and benthic production pathways and are largely affected by fluxes of resources from/to adjacent terrestrial ecosystems. These pathways are often coupled by mobile generalist consumers, potentially leading to indirect interactions among prey that arise when sharing a predator. In contrast, consumers can also undergo resource specialization that restricts their ability to couple resources at a given time.In this thesis, I observed that top-down control of predators on benthic and pelagic prey at increasing productivity was highly dependent on apparent mutualism that was driven by switching behaviour of generalist fish. That, in addition to bottom-up responses of benthic pathways at increasing productivity, had important consequences for the fluxes of energy and high quality polyunsaturated fatty acids (PUFAs) to terrestrial systems via insect emergence. I also found that PUFAs were highly regulated over the ontogeny of Eurasian perch (Perca fluviatilis). Mismatches with PUFA composition in prey may in turn affect resource specialization and the timing of ontogenetic diet shifts, altering the role of perch in the food web. Finally, browning, which is a phenomenon affecting many temperate and boreal lakes, did not affect bottom-up and top-down control in open-water lake food webs. Instead, browning affected prey selectivity, probably changing the pathways of energy transfer within the open-water food web. Overall, this thesis demonstrates that predictions of food web responses in lake ecosystems and their exports to adjacent terrestrial systems depend on the coupling of different pathways and subsequent indirect interactions among prey through shared predation. This could not be explained by classic food chain theory, but rather by a framework including resource coupling and resource specialization over the ontogeny of consumers. These observations must not be overlooked when constructing a comprehensive model of food webs across time and space.
  •  
4.
  • Dakos, Vasilis, et al. (author)
  • Ecosystem tipping points in an evolving world
  • 2019
  • In: Nature Ecology & Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 3:3, s. 355-362
  • Research review (peer-reviewed)abstract
    • There is growing concern over tipping points arising in ecosystems because of the crossing of environmental thresholds. Tipping points lead to abrupt and possibly irreversible shifts between alternative ecosystem states, potentially incurring high societal costs. Trait variation in populations is central to the biotic feedbacks that maintain alternative ecosystem states, as they govern the responses of populations to environmental change that could stabilize or destabilize ecosystem states. However, we know little about how evolutionary changes in trait distributions over time affect the occurrence of tipping points and even less about how big-scale ecological shifts reciprocally interact with trait dynamics. We argue that interactions between ecological and evolutionary processes should be taken into account in order to understand the balance of feedbacks governing tipping points in nature.
  •  
5.
  • Khatri, C, et al. (author)
  • Outcomes after perioperative SARS-CoV-2 infection in patients with proximal femoral fractures: an international cohort study
  • 2021
  • In: BMJ open. - : BMJ. - 2044-6055. ; 11:11, s. e050830-
  • Journal article (peer-reviewed)abstract
    • Studies have demonstrated high rates of mortality in people with proximal femoral fracture and SARS-CoV-2, but there is limited published data on the factors that influence mortality for clinicians to make informed treatment decisions. This study aims to report the 30-day mortality associated with perioperative infection of patients undergoing surgery for proximal femoral fractures and to examine the factors that influence mortality in a multivariate analysis.SettingProspective, international, multicentre, observational cohort study.ParticipantsPatients undergoing any operation for a proximal femoral fracture from 1 February to 30 April 2020 and with perioperative SARS-CoV-2 infection (either 7 days prior or 30-day postoperative).Primary outcome30-day mortality. Multivariate modelling was performed to identify factors associated with 30-day mortality.ResultsThis study reports included 1063 patients from 174 hospitals in 19 countries. Overall 30-day mortality was 29.4% (313/1063). In an adjusted model, 30-day mortality was associated with male gender (OR 2.29, 95% CI 1.68 to 3.13, p<0.001), age >80 years (OR 1.60, 95% CI 1.1 to 2.31, p=0.013), preoperative diagnosis of dementia (OR 1.57, 95% CI 1.15 to 2.16, p=0.005), kidney disease (OR 1.73, 95% CI 1.18 to 2.55, p=0.005) and congestive heart failure (OR 1.62, 95% CI 1.06 to 2.48, p=0.025). Mortality at 30 days was lower in patients with a preoperative diagnosis of SARS-CoV-2 (OR 0.6, 95% CI 0.6 (0.42 to 0.85), p=0.004). There was no difference in mortality in patients with an increase to delay in surgery (p=0.220) or type of anaesthetic given (p=0.787).ConclusionsPatients undergoing surgery for a proximal femoral fracture with a perioperative infection of SARS-CoV-2 have a high rate of mortality. This study would support the need for providing these patients with individualised medical and anaesthetic care, including medical optimisation before theatre. Careful preoperative counselling is needed for those with a proximal femoral fracture and SARS-CoV-2, especially those in the highest risk groups.Trial registration numberNCT04323644
  •  
6.
  • Lafuente, Elvira, et al. (author)
  • Building on 150 Years of Knowledge : The Freshwater Isopod Asellus aquaticus as an Integrative Eco-Evolutionary Model System
  • 2021
  • In: Frontiers in Ecology and Evolution. - : Frontiers Media SA. - 2296-701X. ; 9
  • Research review (peer-reviewed)abstract
    • Interactions between organisms and their environments are central to how biological diversity arises and how natural populations and ecosystems respond to environmental change. These interactions involve processes by which phenotypes are affected by or respond to external conditions (e.g., via phenotypic plasticity or natural selection) as well as processes by which organisms reciprocally interact with the environment (e.g., via eco-evolutionary feedbacks). Organism-environment interactions can be highly dynamic and operate on different hierarchical levels, from genes and phenotypes to populations, communities, and ecosystems. Therefore, the study of organism-environment interactions requires integrative approaches and model systems that are suitable for studies across different hierarchical levels. Here, we introduce the freshwater isopod Asellus aquaticus, a keystone species and an emerging invertebrate model system, as a prime candidate to address fundamental questions in ecology and evolution, and the interfaces therein. We review relevant fields of research that have used A. aquaticus and draft a set of specific scientific questions that can be answered using this species. Specifically, we propose that studies on A. aquaticus can help understanding (i) the influence of host-microbiome interactions on organismal and ecosystem function, (ii) the relevance of biotic interactions in ecosystem processes, and (iii) how ecological conditions and evolutionary forces facilitate phenotypic diversification.
  •  
7.
  • Lürig, Moritz D., et al. (author)
  • Dietary-based developmental plasticity affects juvenile survival in an aquatic detritivore
  • 2021
  • In: Proceedings of the Royal Society B: Biological Sciences. - : The Royal Society. - 0962-8452 .- 1471-2954. ; 288:1945
  • Journal article (peer-reviewed)abstract
    • Developmental plasticity is ubiquitous in natural populations, but the underlying causes and fitness consequences are poorly understood. For consumers, nutritional variation of juvenile diets is probably associated with plasticity in developmental rates, but little is known about how diet quality can affect phenotypic trajectories in ways that might influence survival to maturity and lifetime reproductive output. Here, we tested how the diet quality of a freshwater detritivorous isopod (Asellus aquaticus), in terms of elemental ratios of diet (i.e. carbon: nitrogen: phosphorus; C: N: P), can affect (i) developmental rates of body size and pigmentation and (ii) variation in juvenile survival. We reared 1047 individuals, in a full-sib split-family design (29 families), on either a high- (low C: P, C: N) or low-quality (high C: P, C: N) diet, and quantified developmental trajectories of body size and pigmentation for every individual over 12 weeks. Our diet contrast caused strong divergence in the developmental rates of pigmentation but not growth, culminating in a distribution of adult pigmentation spanning the broad range of phenotypes observed both within and among natural populations. Under low-quality diet, we found highest survival at intermediate growth and pigmentation rates. By contrast, survival under high-quality diet survival increased continuously with pigmentation rate, with longest lifespans at intermediate growth rates and high pigmentation rates. Building on previous work which suggests that visual predation mediates the evolution of cryptic pigmentation in A. aquaticus, our study shows how diet quality and composition can generate substantial phenotypic variation by affecting rates of growth and pigmentation during development in the absence of predation.
  •  
8.
  • Matthews, Blake, et al. (author)
  • Toward an integration of evolutionary biology and ecosystem science
  • 2011
  • In: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 14:7, s. 690-701
  • Research review (peer-reviewed)abstract
    • At present, the disciplines of evolutionary biology and ecosystem science are weakly integrated. As a result, we have a poor understanding of how the ecological and evolutionary processes that create, maintain, and change biological diversity affect the flux of energy and materials in global biogeochemical cycles. The goal of this article was to review several research fields at the interfaces between ecosystem science, community ecology and evolutionary biology, and suggest new ways to integrate evolutionary biology and ecosystem science. In particular, we focus on how phenotypic evolution by natural selection can influence ecosystem functions by affecting processes at the environmental, population and community scale of ecosystem organization. We develop an eco-evolutionary model to illustrate linkages between evolutionary change (e. g. phenotypic evolution of producer), ecological interactions (e. g. consumer grazing) and ecosystem processes (e. g. nutrient cycling). We conclude by proposing experiments to test the ecosystem consequences of evolutionary changes.
  •  
9.
  • Moosmann, Marvin, et al. (author)
  • On the evolution of trophic position
  • 2021
  • In: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 24:12, s. 2549-2562
  • Journal article (peer-reviewed)abstract
    • The trophic structure of food webs is primarily determined by the variation in trophic position among species and individuals. Temporal dynamics of food web structure are central to our understanding of energy and nutrient fluxes in changing environments, but little is known about how evolutionary processes shape trophic position variation in natural populations. We propose that trophic position, whose expression depends on both environmental and genetic determinants of the diet variation in individual consumers, is a quantitative trait that can evolve via natural selection. Such evolution can occur either when trophic position is correlated with other heritable morphological and behavioural traits under selection, or when trophic position is a target of selection, which is possible if the fitness effects of prey items are heterogeneously distributed along food chains. Recognising trophic position as an evolving trait, whose expression depends on the food web context, provides an important conceptual link between behavioural foraging theory and food web dynamics, and a useful starting point for the integration of ecological and evolutionary studies of trophic position.
  •  
10.
  • Petchey, Owen L., et al. (author)
  • The ecological forecast horizon, and examples of its uses and determinants
  • 2015
  • In: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 18:7, s. 597-611
  • Journal article (peer-reviewed)abstract
    • Forecasts of ecological dynamics in changing environments are increasingly important, and are available for a plethora of variables, such as species abundance and distribution, community structure and ecosystem processes. There is, however, a general absence of knowledge about how far into the future, or other dimensions (space, temperature, phylogenetic distance), useful ecological forecasts can be made, and about how features of ecological systems relate to these distances. The ecological forecast horizon is the dimensional distance for which useful forecasts can be made. Five case studies illustrate the influence of various sources of uncertainty (e.g. parameter uncertainty, environmental variation, demographic stochasticity and evolution), level of ecological organisation (e.g. population or community), and organismal properties (e.g. body size or number of trophic links) on temporal, spatial and phylogenetic forecast horizons. Insights from these case studies demonstrate that the ecological forecast horizon is a flexible and powerful tool for researching and communicating ecological predictability. It also has potential for motivating and guiding agenda setting for ecological forecasting research and development.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view