SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Mauri E.) "

Search: WFRF:(Mauri E.)

  • Result 1-10 of 72
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2017
  • swepub:Mat__t
  •  
2.
  • Arndt, D. S., et al. (author)
  • STATE OF THE CLIMATE IN 2017
  • 2018
  • In: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 99:8, s. S1-S310
  • Research review (peer-reviewed)
  •  
3.
  • Arndt, D. S., et al. (author)
  • State of the Climate in 2016
  • 2017
  • In: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 98:8, s. S1-S280
  • Journal article (peer-reviewed)abstract
    • In 2016, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-continued to increase and reach new record highs. The 3.5 +/- 0.1 ppm rise in global annual mean carbon dioxide from 2015 to 2016 was the largest annual increase observed in the 58-year measurement record. The annual global average carbon dioxide concentration at Earth's surface surpassed 400 ppm (402.9 +/- 0.1 ppm) for the first time in the modern atmospheric measurement record and in ice core records dating back as far as 800000 years. One of the strongest El Nino events since at least 1950 dissipated in spring, and a weak La Nina evolved later in the year. Owing at least in part to the combination of El Nino conditions early in the year and a long-term upward trend, Earth's surface observed record warmth for a third consecutive year, albeit by a much slimmer margin than by which that record was set in 2015. Above Earth's surface, the annual lower troposphere temperature was record high according to all datasets analyzed, while the lower stratospheric temperature was record low according to most of the in situ and satellite datasets. Several countries, including Mexico and India, reported record high annual temperatures while many others observed near-record highs. A week-long heat wave at the end of April over the northern and eastern Indian peninsula, with temperatures surpassing 44 degrees C, contributed to a water crisis for 330 million people and to 300 fatalities. In the Arctic the 2016 land surface temperature was 2.0 degrees C above the 1981-2010 average, breaking the previous record of 2007, 2011, and 2015 by 0.8 degrees C, representing a 3.5 degrees C increase since the record began in 1900. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 24 March, the sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, tying with 2015 at 7.2% below the 1981-2010 average. The September 2016 Arctic sea ice minimum extent tied with 2007 for the second lowest value on record, 33% lower than the 1981-2010 average. Arctic sea ice cover remains relatively young and thin, making it vulnerable to continued extensive melt. The mass of the Greenland Ice Sheet, which has the capacity to contribute similar to 7 m to sea level rise, reached a record low value. The onset of its surface melt was the second earliest, after 2012, in the 37-year satellite record. Sea surface temperature was record high at the global scale, surpassing the previous record of 2015 by about 0.01 degrees C. The global sea surface temperature trend for the 21st century-to-date of +0.162 degrees C decade(-1) is much higher than the longer term 1950-2016 trend of +0.100 degrees C decade(-1). Global annual mean sea level also reached a new record high, marking the sixth consecutive year of increase. Global annual ocean heat content saw a slight drop compared to the record high in 2015. Alpine glacier retreat continued around the globe, and preliminary data indicate that 2016 is the 37th consecutive year of negative annual mass balance. Across the Northern Hemisphere, snow cover for each month from February to June was among its four least extensive in the 47-year satellite record. Continuing a pattern below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska and at the Canadian observatory on northernmost Ellesmere Island. In the Antarctic, record low monthly surface pressures were broken at many stations, with the southern annular mode setting record high index values in March and June. Monthly high surface pressure records for August and November were set at several stations. During this period, record low daily and monthly sea ice extents were observed, with the November mean sea ice extent more than 5 standard deviations below the 1981-2010 average. These record low sea ice values contrast sharply with the record high values observed during 2012-14. Over the region, springtime Antarctic stratospheric ozone depletion was less severe relative to the 1991-2006 average, but ozone levels were still low compared to pre-1990 levels. Closer to the equator, 93 named tropical storms were observed during 2016, above the 1981-2010 average of 82, but fewer than the 101 storms recorded in 2015. Three basins-the North Atlantic, and eastern and western North Pacific-experienced above-normal activity in 2016. The Australian basin recorded its least active season since the beginning of the satellite era in 1970. Overall, four tropical cyclones reached the Saffir-Simpson category 5 intensity level. The strong El Nino at the beginning of the year that transitioned to a weak La Nina contributed to enhanced precipitation variability around the world. Wet conditions were observed throughout the year across southern South America, causing repeated heavy flooding in Argentina, Paraguay, and Uruguay. Wetter-than-usual conditions were also observed for eastern Europe and central Asia, alleviating the drought conditions of 2014 and 2015 in southern Russia. In the United States, California had its first wetter-than-average year since 2012, after being plagued by drought for several years. Even so, the area covered by drought in 2016 at the global scale was among the largest in the post-1950 record. For each month, at least 12% of land surfaces experienced severe drought conditions or worse, the longest such stretch in the record. In northeastern Brazil, drought conditions were observed for the fifth consecutive year, making this the longest drought on record in the region. Dry conditions were also observed in western Bolivia and Peru; it was Bolivia's worst drought in the past 25 years. In May, with abnormally warm and dry conditions already prevailing over western Canada for about a year, the human-induced Fort McMurray wildfire burned nearly 590000 hectares and became the costliest disaster in Canadian history, with $3 billion (U.S. dollars) in insured losses.
  •  
4.
  • Mercuri, E., et al. (author)
  • Safety and effectiveness of ataluren: comparison of results from the STRIDE Registry and CINRG DMD Natural History Study
  • 2020
  • In: Journal of Comparative Effectiveness Research. - : Becaris Publishing Limited. - 2042-6305 .- 2042-6313. ; 9:5, s. 341-360
  • Journal article (peer-reviewed)abstract
    • Aim: Strategic Targeting of Registries and International Database of Excellence (STRIDE) is an ongoing, multicenter registry providing real-world evidence regarding ataluren use in patients with nonsense mutation Duchenne muscular dystrophy (nmDMD). We examined the effectiveness of ataluren + standard of care (SoC) in the registry versus SoC alone in the Cooperative International Neuromuscular Research Group (CINRG) Duchenne Natural History Study (DNHS), DMD genotype-phenotype/-ataluren benefit correlations and ataluren safety. Patients & methods: Propensity score matching was performed to identify STRIDE and CINRG DNHS patients who were comparable in established disease progression predictors (registry cut-off date, 9 July 2018). Results & conclusion: Kaplan-Meier analyses demonstrated that ataluren + SoC significantly delayed age at loss of ambulation and age at worsening performance in timed function tests versus SoC alone (p <= 0.05). There were no DMD genotype-phenotype/ataluren benefit correlations. Ataluren was well tolerated. These results indicate that ataluren + SoC delays functional milestones of DMD progression in patients with nmDMD in routine clinical practice. ClinicalTrials.gov identifier: NCT02369731. ClinicalTrials.gov identifier: NCT02369731.
  •  
5.
  • Akrami, Y., et al. (author)
  • Planck intermediate results LII. Planet flux densities
  • 2017
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 607
  • Journal article (peer-reviewed)abstract
    • Measurements of flux density are described for five planets, Mars, Jupiter, Saturn, Uranus, and Neptune, across the six Planck High Frequency Instrument frequency bands (100-857 GHz) and these are then compared with models and existing data. In our analysis, we have also included estimates of the brightness of Jupiter and Saturn at the three frequencies of the Planck Low Frequency Instrument (30, 44, and 70 GHz). The results provide constraints on the intrinsic brightness and the brightness time-variability of these planets. The majority of the planet flux density estimates are limited by systematic errors, but still yield better than 1% measurements in many cases. Applying data from Planck HFI, the Wilkinson Microwave Anisotropy Probe (WMAP), and the Atacama Cosmology Telescope (ACT) to a model that incorporates contributions from Saturn's rings to the planet's total flux density suggests a best fit value for the spectral index of Saturn's ring system of beta(ring) = 2 : 30 +/- 0 : 03 over the 30-1000 GHz frequency range. Estimates of the polarization amplitude of the planets have also been made in the four bands that have polarization-sensitive detectors (100-353 GHz); this analysis provides a 95% confidence level upper limit on Mars's polarization of 1.8, 1.7, 1.2, and 1.7% at 100, 143, 217, and 353 GHz, respectively. The average ratio between the Planck-HFI measurements and the adopted model predictions for all five planets (excluding Jupiter observations for 353 GHz) is 1.004, 1.002, 1.021, and 1.033 for 100, 143, 217, and 353 GHz, respectively. Model predictions for planet thermodynamic temperatures are therefore consistent with the absolute calibration of Planck-HFI detectors at about the three-percent level. We compare our measurements with published results from recent cosmic microwave background experiments. In particular, we observe that the flux densities measured by Planck HFI and WMAP agree to within 2%. These results allow experiments operating in the mm-wavelength range to cross-calibrate against Planck and improve models of radiative transport used in planetary science.
  •  
6.
  • Aghanim, N., et al. (author)
  • Planck 2018 results I. Overview and the cosmological legacy of Planck
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 641
  • Journal article (peer-reviewed)abstract
    • The European Space Agency's Planck satellite, which was dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013, producing deep, high-resolution, all-sky maps in nine frequency bands from 30 to 857 GHz. This paper presents the cosmological legacy of Planck, which currently provides our strongest constraints on the parameters of the standard cosmological model and some of the tightest limits available on deviations from that model. The 6-parameter Lambda CDM model continues to provide an excellent fit to the cosmic microwave background data at high and low redshift, describing the cosmological information in over a billion map pixels with just six parameters. With 18 peaks in the temperature and polarization angular power spectra constrained well, Planck measures five of the six parameters to better than 1% (simultaneously), with the best-determined parameter (theta (*)) now known to 0.03%. We describe the multi-component sky as seen by Planck, the success of the Lambda CDM model, and the connection to lower-redshift probes of structure formation. We also give a comprehensive summary of the major changes introduced in this 2018 release. The Planck data, alone and in combination with other probes, provide stringent constraints on our models of the early Universe and the large-scale structure within which all astrophysical objects form and evolve. We discuss some lessons learned from the Planck mission, and highlight areas ripe for further experimental advances.
  •  
7.
  • Pittori, C., et al. (author)
  • First AGILE catalog of high-confidence gamma-ray sources
  • 2009
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 506:3, s. 1563-1574
  • Journal article (peer-reviewed)abstract
    • We present the first catalog of high-confidence gamma-ray sources detected by the AGILE satellite during observations performed from July 9, 2007 to June 30, 2008. Cataloged sources were detected by merging all the available data over the entire time period. AGILE, launched in April 2007, is an ASI mission devoted to gamma-ray observations in the 30 MeV-50 GeV energy range, with simultaneous X-ray imaging capability in the 18-60 keV band. This catalog is based on Gamma-Ray Imaging Detector (GRID) data for energies greater than 100 MeV. For the first AGILE catalog, we adopted a conservative analysis, with a high-quality event filter optimized to select gamma-ray events within the central zone of the instrument field of view (radius of 40 degrees). This is a significance-limited (4 sigma) catalog, and it is not a complete flux-limited sample due to the non-uniform first-year AGILE sky coverage. The catalog includes 47 sources, 21 of which are associated with confirmed or candidate pulsars, 13 with blazars (7 FSRQ, 4 BL Lacs, 2 unknown type), 2 with HMXRBs, 2 with SNRs, 1 with a colliding-wind binary system, and 8 with unidentified sources.
  •  
8.
  • Adam, R., et al. (author)
  • Planck intermediate results XLVII. Planck constraints on reionization history
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 596
  • Journal article (peer-reviewed)abstract
    • We investigate constraints on cosmic reionization extracted from the Planck cosmic microwave background (CMB) data. We combine the Planck CMB anisotropy data in temperature with the low-multipole polarization data to fit Lambda CDM models with various parameterizations of the reionization history. We obtain a Thomson optical depth tau = 0.058 +/- 0.012 for the commonly adopted instantaneous reionization model. This confirms, with data solely from CMB anisotropies, the low value suggested by combining Planck 2015 results with other data sets, and also reduces the uncertainties. We reconstruct the history of the ionization fraction using either a symmetric or an asymmetric model for the transition between the neutral and ionized phases. To determine better constraints on the duration of the reionization process, we also make use of measurements of the amplitude of the kinetic Sunyaev-Zeldovich (kSZ) effect using additional information from the high-resolution Atacama Cosmology Telescope and South Pole Telescope experiments. The average redshift at which reionization occurs is found to lie between z = 7.8 and 8.8, depending on the model of reionization adopted. Using kSZ constraints and a redshift-symmetric reionization model, we find an upper limit to the width of the reionization period of Delta z < 2.8. In all cases, we find that the Universe is ionized at less than the 10% level at redshifts above z similar or equal to 10. This suggests that an early onset of reionization is strongly disfavoured by the Planck data. We show that this result also reduces the tension between CMB-based analyses and constraints from other astrophysical sources.
  •  
9.
  • Aghanim, N., et al. (author)
  • Planck 2018 results III. High Frequency Instrument data processing and frequency maps
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 641
  • Journal article (peer-reviewed)abstract
    • This paper presents the High Frequency Instrument (HFI) data processing procedures for the Planck 2018 release. Major improvements in mapmaking have been achieved since the previous Planck 2015 release, many of which were used and described already in an intermediate paper dedicated to the Planck polarized data at low multipoles. These improvements enabled the first significant measurement of the reionization optical depth parameter using Planck-HFI data. This paper presents an extensive analysis of systematic effects, including the use of end-to-end simulations to facilitate their removal and characterize the residuals. The polarized data, which presented a number of known problems in the 2015 Planck release, are very significantly improved, especially the leakage from intensity to polarization. Calibration, based on the cosmic microwave background (CMB) dipole, is now extremely accurate and in the frequency range 100-353 GHz reduces intensity-to-polarization leakage caused by calibration mismatch. The Solar dipole direction has been determined in the three lowest HFI frequency channels to within one arc minute, and its amplitude has an absolute uncertainty smaller than 0.35 mu K, an accuracy of order 10(-4). This is a major legacy from the Planck HFI for future CMB experiments. The removal of bandpass leakage has been improved for the main high-frequency foregrounds by extracting the bandpass-mismatch coefficients for each detector as part of the mapmaking process; these values in turn improve the intensity maps. This is a major change in the philosophy of frequency maps, which are now computed from single detector data, all adjusted to the same average bandpass response for the main foregrounds. End-to-end simulations have been shown to reproduce very well the relative gain calibration of detectors, as well as drifts within a frequency induced by the residuals of the main systematic effect (analogue-to-digital convertor non-linearity residuals). Using these simulations, we have been able to measure and correct the small frequency calibration bias induced by this systematic effect at the 10(-4) level. There is no detectable sign of a residual calibration bias between the first and second acoustic peaks in the CMB channels, at the 10(-3) level.
  •  
10.
  • Aghanim, N., et al. (author)
  • Planck 2018 results V. CMB power spectra and likelihoods
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 641
  • Journal article (peer-reviewed)abstract
    • We describe the legacy Planck cosmic microwave background (CMB) likelihoods derived from the 2018 data release. The overall approach is similar in spirit to the one retained for the 2013 and 2015 data release, with a hybrid method using different approximations at low (l< 30) and high (l >= 30) multipoles, implementing several methodological and data-analysis refinements compared to previous releases. With more realistic simulations, and better correction and modelling of systematic effects, we can now make full use of the CMB polarization observed in the High Frequency Instrument (HFI) channels. The low-multipole EE cross-spectra from the 100 GHz and 143 GHz data give a constraint on the Lambda CDM reionization optical-depth parameter tau to better than 15% (in combination with the TT low-l data and the high-l temperature and polarization data), tightening constraints on all parameters with posterior distributions correlated with tau. We also update the weaker constraint on tau from the joint TEB likelihood using the Low Frequency Instrument (LFI) channels, which was used in 2015 as part of our baseline analysis. At higher multipoles, the CMB temperature spectrum and likelihood are very similar to previous releases. A better model of the temperature-to-polarization leakage and corrections for the effective calibrations of the polarization channels (i.e., the polarization efficiencies) allow us to make full use of polarization spectra, improving the Lambda CDM constraints on the parameters theta(MC), omega(c), omega(b), and H-0 by more than 30%, and n(s) by more than 20% compared to TT-only constraints. Extensive tests on the robustness of the modelling of the polarization data demonstrate good consistency, with some residual modelling uncertainties. At high multipoles, we are now limited mainly by the accuracy of the polarization efficiency modelling. Using our various tests, simulations, and comparison between different high-multipole likelihood implementations, we estimate the consistency of the results to be better than the 0.5 sigma level on the Lambda CDM parameters, as well as classical single-parameter extensions for the joint likelihood (to be compared to the 0.3 sigma levels we achieved in 2015 for the temperature data alone on Lambda CDM only). Minor curiosities already present in the previous releases remain, such as the differences between the best-fit Lambda CDM parameters for the l< 800 and l> 800 ranges of the power spectrum, or the preference for more smoothing of the power-spectrum peaks than predicted in Lambda CDM fits. These are shown to be driven by the temperature power spectrum and are not significantly modified by the inclusion of the polarization data. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 72
Type of publication
journal article (62)
conference paper (6)
research review (3)
Type of content
peer-reviewed (68)
other academic/artistic (3)
Author/Editor
Mauri, N. (25)
Tenti, M. (25)
Burigana, C. (24)
Galeotta, S. (24)
Galli, S. (24)
Kunz, M. (24)
show more...
Kurki-Suonio, H. (24)
Lilje, P. B. (24)
Frolov, A. (23)
Gudmundsson, Jón E. (23)
Ballardini, M. (23)
Calabrese, E. (23)
Delabrouille, J. (23)
Di Valentino, E. (23)
Finelli, F. (23)
Matarrese, S. (23)
Paoletti, D. (23)
Huang, Z. (23)
Frailis, M. (23)
Maciás-Pérez, J. F. (23)
Baccigalupi, C. (23)
Banday, A. J. (23)
Barreiro, R. B. (23)
Bartolo, N. (23)
Basak, S. (23)
Benabed, K. (23)
Bersanelli, M. (23)
Bielewicz, P. (23)
Bond, J. R. (23)
Borrill, J. (23)
Crill, B. P. (23)
de Zotti, G. (23)
Diego, J. M. (23)
Dupac, X. (23)
Eriksen, H. K. (23)
Ganga, K. (23)
Gruppuso, A. (23)
Herranz, D. (23)
Keskitalo, R. (23)
Lattanzi, M. (23)
Levrier, F. (23)
Lopez-Caniego, M. (23)
Martin, P. G. (23)
Martinez-Gonzalez, E ... (23)
Migliaccio, M. (23)
Molinari, D. (23)
Morgante, G. (23)
Piacentini, F. (23)
Polenta, G. (23)
Rachen, J. P. (23)
show less...
University
Stockholm University (28)
Karolinska Institutet (16)
Uppsala University (12)
University of Gothenburg (10)
Lund University (7)
Royal Institute of Technology (5)
show more...
Chalmers University of Technology (3)
Umeå University (2)
Linköping University (2)
Mid Sweden University (2)
Linnaeus University (2)
Mälardalen University (1)
Örebro University (1)
University of Skövde (1)
show less...
Language
English (72)
Research subject (UKÄ/SCB)
Natural sciences (48)
Medical and Health Sciences (11)
Engineering and Technology (3)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view