SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Mazurkiewicz M) "

Search: WFRF:(Mazurkiewicz M)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Malolepszy, A, et al. (author)
  • Deactivation resistant Pd-ZrO2 supported on multiwall carbon nanotubes catalyst for direct formic acid fuel cells
  • 2015
  • In: International journal of hydrogen energy. - : Elsevier. - 0360-3199 .- 1879-3487. ; 40:46, s. 16724-16733
  • Journal article (peer-reviewed)abstract
    • One of the main problems of palladium based catalysts for a direct formic acid fuel cell (DFAFC) is their low stability during a long-term operation. In these studies, the Pd–ZrO2 catalyst supported on the multiwall carbon nanotubes (MWCNTs) was prepared and thermo-chemically treated. These catalysts were tested in a fuel cell for formic acid electrooxidation, and their chemical composition and structure were characterised by the XPS, STEM, HR-TEM and XRD techniques.It was found that the Pd–ZrO2/MWCNTs catalyst after synthesis causes oscillations of the cell voltage during operation resulting in significantly higher deactivation resistance than that of Pd/MWCNTs. This may be attributed to the “self-cleaning” mechanism of poisoned Pd catalyst by carbon monoxide through the electrochemical oxidation of COads (adsorbed) to CO2 (gas).
  •  
6.
  • Nitze, Florian, 1981, et al. (author)
  • Direct support mixture painting, using Pd(0) organo-metallic compounds - an easy and environmentally sound approach to combine decoration and electrode preparation for fuel cells
  • 2014
  • In: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 2:48, s. 20973-20979
  • Journal article (peer-reviewed)abstract
    • An inventive, fast and straight-forward approach for the direct preparation of fuel cell electrodes has been developed and tested. Our approach avoids long catalyst preparation and post-synthesis treatment. It reduces the use of chemicals and thereby concomitantly lowers the environmental impact and improves cost efficiency. It combines decoration of the support by palladium nanoparticles with electrode preparation through a simple one-step ink-painting and annealing process. Composites have been investigated by high resolution transmission electron microscopy, scanning electron microscopy, and Xray diffraction. Crystalline particles are well-attached and well-distributed on the support. Particles are of few nanometers in size and spherical for decorated Vulcan whereas they are larger and irregularly shaped for decorated helical carbon nanofibers (HCNFs). Electrodes with a metal loading of 0.8 mg cm(-2) have been tested in a direct formic acid fuel cell. Both the Vulcan and the HCNF electrodes show a similar and high power output of up to 120 mW mg(-1). They also show similar performances in deactivation experiments conducted at 200 mA cm(-2) even when using only high purity grade formic acid. After deactivation the electrodes show no structural damage, making them superior to most commercial catalysts. The electrodes can be completely regenerated to initial activity by simple treatment with water. The easy regeneration process indicates that CO-adsorption on the fuel cell anode catalyst is not the main poisoning mechanism responsible for electrode degeneration.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view