SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(McCormick Jeremy) "

Search: WFRF:(McCormick Jeremy)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Moore, Josh, et al. (author)
  • OME-Zarr : A cloud-optimized bioimaging file format with international community support
  • 2023
  • In: Histochemistry and Cell Biology. - : Springer Nature. - 1432-119X .- 0948-6143. ; 160:3, s. 223-251
  • Journal article (peer-reviewed)abstract
    • A growing community is constructing a next-generation file format (NGFF) for bioimaging to overcome problems of scalability and heterogeneity. Organized by the Open Microscopy Environment (OME), individuals and institutes across diverse modalities facing these problems have designed a format specification process (OME-NGFF) to address these needs. This paper brings together a wide range of those community members to describe the cloud-optimized format itself-OME-Zarr-along with tools and data resources available today to increase FAIR access and remove barriers in the scientific process. The current momentum offers an opportunity to unify a key component of the bioimaging domain-the file format that underlies so many personal, institutional, and global data management and analysis tasks.
  •  
3.
  • Åkesson, Torsten, et al. (author)
  • A high efficiency photon veto for the Light Dark Matter eXperiment
  • 2020
  • In: Journal of High Energy Physics. - 1126-6708. ; 2020:4
  • Journal article (peer-reviewed)abstract
    • Fixed-target experiments using primary electron beams can be powerful discovery tools for light dark matter in the sub-GeV mass range. The Light Dark Matter eXperiment (LDMX) is designed to measure missing momentum in high-rate electron fixed-target reactions with beam energies of 4 GeV to 16 GeV. A prerequisite for achieving several important sensitivity milestones is the capability to efficiently reject backgrounds associated with few-GeV bremsstrahlung, by twelve orders of magnitude, while maintaining high efficiency for signal. The primary challenge arises from events with photo-nuclear reactions faking the missing-momentum property of a dark matter signal. We present a methodology developed for the LDMX detector concept that is capable of the required rejection. By employing a detailed Geant4-based model of the detector response, we demonstrate that the sampling calorimetry proposed for LDMX can achieve better than 10−13 rejection of few-GeV photons. This suggests that the luminosity-limited sensitivity of LDMX can be realized at 4 GeV and higher beam energies. [Figure not available: see fulltext.]
  •  
4.
  • Åkesson, Torsten, et al. (author)
  • Light Dark Matter eXperiment (LDMX)
  • 2018
  • Reports (other academic/artistic)abstract
    • We present an initial design study for LDMX, the Light Dark Matter Experiment, a small-scale accelerator experiment having broad sensitivity to both direct dark matter and mediator particle production in the sub-GeV mass region. LDMX employs missing momentum and energy techniques in multi-GeV electro-nuclear fixed-target collisions to explore couplings to electrons in uncharted regions that extend down to and below levels that are motivated by direct thermal freeze-out mechanisms. LDMX would also be sensitive to a wide range of visibly and invisibly decaying dark sector particles, thereby addressing many of the science drivers highlighted in the 2017 US Cosmic Visions New Ideas in Dark Matter Community Report. LDMX would achieve the required sensitivity by leveraging existing and developing detector technologies from the CMS, HPS and Mu2e experiments. In this paper, we present our initial design concept, detailed GEANT-based studies of detector performance, signal and background processes, and a preliminary analysis approach. We demonstrate how a first phase of LDMX could expand sensitivity to a variety of light dark matter, mediator, and millicharge particles by several orders of magnitude in coupling over the broad sub-GeV mass range.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view