SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(McNeil S.) "

Search: WFRF:(McNeil S.)

  • Result 1-10 of 36
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Schael, S., et al. (author)
  • Electroweak measurements in electron positron collisions at W-boson-pair energies at LEP
  • 2013
  • In: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 532:4, s. 119-244
  • Research review (peer-reviewed)abstract
    • Electroweak measurements performed with data taken at the electron positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3 fb(-1) collected by the four LEP experiments ALEPH, DELPHI, 13 and OPAL, at centre-of-mass energies ranging from 130 GeV to 209 GeV. Combining the published results of the four LEP experiments, the measurements include total and differential cross-sections in photon-pair, fermion-pair and four-fermion production, the latter resulting from both double-resonant WW and ZZ production as well as singly resonant production. Total and differential cross-sections are measured precisely, providing a stringent test of the Standard Model at centre-of-mass energies never explored before in electron positron collisions. Final-state interaction effects in four-fermion production, such as those arising from colour reconnection and Bose Einstein correlations between the two W decay systems arising in WW production, are searched for and upper limits on the strength of possible effects are obtained. The data are used to determine fundamental properties of the W boson and the electroweak theory. Among others, the mass and width of the W boson, m(w) and Gamma(w), the branching fraction of W decays to hadrons, B(W -> had), and the trilinear gauge-boson self-couplings g(1)(Z), K-gamma and lambda(gamma), are determined to be: m(w) = 80.376 +/- 0.033 GeV Gamma(w) = 2.195 +/- 0.083 GeV B(W -> had) = 67.41 +/- 0.27% g(1)(Z) = 0.984(-0.020)(+0.018) K-gamma - 0.982 +/- 0.042 lambda(gamma) = 0.022 +/- 0.019. (C) 2013 Elsevier B.V. All rights reserved.
  •  
2.
  • Schael, S, et al. (author)
  • Precision electroweak measurements on the Z resonance
  • 2006
  • In: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 427:5-6, s. 257-454
  • Research review (peer-reviewed)abstract
    • We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Huyghe, Jeroen R., et al. (author)
  • Discovery of common and rare genetic risk variants for colorectal cancer
  • 2019
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:1, s. 76-
  • Journal article (peer-reviewed)abstract
    • To further dissect the genetic architecture of colorectal cancer (CRC), we performed whole-genome sequencing of 1,439 cases and 720 controls, imputed discovered sequence variants and Haplotype Reference Consortium panel variants into genome-wide association study data, and tested for association in 34,869 cases and 29,051 controls. Findings were followed up in an additional 23,262 cases and 38,296 controls. We discovered a strongly protective 0.3% frequency variant signal at CHD1. In a combined meta-analysis of 125,478 individuals, we identified 40 new independent signals at P < 5 x 10(-8), bringing the number of known independent signals for CRC to similar to 100. New signals implicate lower-frequency variants, Kruppel-like factors, Hedgehog signaling, Hippo-YAP signaling, long noncoding RNAs and somatic drivers, and support a role for immune function. Heritability analyses suggest that CRC risk is highly polygenic, and larger, more comprehensive studies enabling rare variant analysis will improve understanding of biology underlying this risk and influence personalized screening strategies and drug development.
  •  
8.
  •  
9.
  •  
10.
  • Divaris, K., et al. (author)
  • Phenotype Harmonization in the GLIDE2 Oral Health Genomics Consortium
  • 2022
  • In: Journal of Dental Research. - : Sage Publications. - 0022-0345 .- 1544-0591. ; 101:11, s. 1408-1416
  • Journal article (peer-reviewed)abstract
    • Genetic risk factors play important roles in the etiology of oral, dental, and craniofacial diseases. Identifying the relevant risk loci and understanding their molecular biology could highlight new prevention and management avenues. Our current understanding of oral health genomics suggests that dental caries and periodontitis are polygenic diseases, and very large sample sizes and informative phenotypic measures are required to discover signals and adequately map associations across the human genome. In this article, we introduce the second wave of the Gene-Lifestyle Interactions and Dental Endpoints consortium (GLIDE2) and discuss relevant data analytics challenges, opportunities, and applications. In this phase, the consortium comprises a diverse, multiethnic sample of over 700,000 participants from 21 studies contributing clinical data on dental caries experience and periodontitis. We outline the methodological challenges of combining data from heterogeneous populations, as well as the data reduction problem in resolving detailed clinical examination records into tractable phenotypes, and describe a strategy that addresses this. Specifically, we propose a 3-tiered phenotyping approach aimed at leveraging both the large sample size in the consortium and the detailed clinical information available in some studies, wherein binary, severity-encompassing, and “precision,” data-driven clinical traits are employed. As an illustration of the use of data-driven traits across multiple cohorts, we present an application of dental caries experience data harmonization in 8 participating studies (N = 55,143) using previously developed permanent dentition tooth surface–level dental caries pattern traits. We demonstrate that these clinical patterns are transferable across multiple cohorts, have similar relative contributions within each study, and thus are prime targets for genetic interrogation in the expanded and diverse multiethnic sample of GLIDE2. We anticipate that results from GLIDE2 will decisively advance the knowledge base of mechanisms at play in oral, dental, and craniofacial health and disease and further catalyze international collaboration and data and resource sharing in genomics research.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 36
Type of publication
journal article (27)
conference paper (6)
research review (3)
Type of content
peer-reviewed (26)
other academic/artistic (10)
Author/Editor
Agartz, I (5)
McNeil, Thomas (5)
Brenner, H (4)
Chang-Claude, Jenny (4)
Li, C. (4)
Wolk, Alicja (4)
show more...
Berndt, Sonja I (4)
Conti, David V (4)
Albanes, Demetrius (4)
Giles, Graham G (4)
Brenner, Hermann (4)
Kim, DH (4)
Hall, H (4)
Qu, Conghui (4)
Buchanan, Daniel D. (4)
Casey, Graham (4)
Chan, Andrew T. (4)
Gruber, Stephen B. (4)
Harrison, Tabitha A. (4)
Hoffmeister, Michael (4)
Huyghe, Jeroen R. (4)
Jenkins, Mark A. (4)
Li, Li (4)
Moreno, Victor (4)
Newcomb, Polly A. (4)
Potter, John D. (4)
Rennert, Gad (4)
Schmit, Stephanie L. (4)
Slattery, Martha L. (4)
Ulrich, Cornelia M. (4)
van Guelpen, Bethany (4)
White, Emily (4)
Wu, Anna H. (4)
Hsu, Li (4)
Peters, Ulrike (4)
Campbell, Peter T. (4)
Lindblom, Annika (4)
Offit, Kenneth (4)
Zheng, Wei (4)
Weinstein, Stephanie ... (4)
Bezieau, Stephane (4)
Hampe, Jochen (4)
Li, Christopher I. (4)
Schafmayer, Clemens (4)
Feskens, Edith J. M. (4)
Hudson, Thomas J. (4)
Lejbkowicz, Flavio (4)
McNeil, Caroline E. (4)
Melas, Marilena (4)
McNeil, TF (4)
show less...
University
Karolinska Institutet (25)
Lund University (10)
Uppsala University (9)
Umeå University (5)
Royal Institute of Technology (2)
University of Gothenburg (1)
show more...
Stockholm University (1)
Malmö University (1)
Stockholm School of Economics (1)
Blekinge Institute of Technology (1)
show less...
Language
English (36)
Research subject (UKÄ/SCB)
Medical and Health Sciences (18)
Natural sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view