SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Miaud Claude) "

Search: WFRF:(Miaud Claude)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fisher, Matthew C., et al. (author)
  • Development and worldwide use of non-lethal, and minimal population-level impact, protocols for the isolation of amphibian chytrid fungi
  • 2018
  • In: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 8
  • Journal article (peer-reviewed)abstract
    • Parasitic chytrid fungi have emerged as a significant threat to amphibian species worldwide, necessitating the development of techniques to isolate these pathogens into culture for research purposes. However, early methods of isolating chytrids from their hosts relied on killing amphibians. We modified a pre-existing protocol for isolating chytrids from infected animals to use toe clips and biopsies from toe webbing rather than euthanizing hosts, and distributed the protocol to researchers as part of the BiodivERsA project RACE; here called the RML protocol. In tandem, we developed a lethal procedure for isolating chytrids from tadpole mouthparts. Reviewing a database of use a decade after their inception, we find that these methods have been applied across 5 continents, 23 countries and in 62 amphibian species. Isolation of chytrids by the non-lethal RML protocol occured in 18% of attempts with 207 fungal isolates and three species of chytrid being recovered. Isolation of chytrids from tadpoles occured in 43% of attempts with 334 fungal isolates of one species (Batrachochytrium dendrobatidis) being recovered. Together, these methods have resulted in a significant reduction and refinement of our use of threatened amphibian species and have improved our ability to work with this group of emerging pathogens.
  •  
2.
  • O'Hanlon, Simon J., et al. (author)
  • Recent Asian origin of chytrid fungi causing global amphibian declines
  • 2018
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 360:6389, s. 621-
  • Journal article (peer-reviewed)abstract
    • Globalized infectious diseases are causing species declines worldwide, but their source often remains elusive. We used whole-genome sequencing to solve the spatiotemporal origins of themost devastating panzootic to date, caused by the fungus Batrachochytrium dendrobatidis, a proximate driver of global amphibian declines. We traced the source of B. dendrobatidis to the Korean peninsula, where one lineage, BdASIA-1, exhibits the genetic hallmarks of an ancestral population that seeded the panzootic. We date the emergence of this pathogen to the early 20th century, coinciding with the global expansion of commercial trade in amphibians, and we show that intercontinental transmission is ongoing. Our findings point to East Asia as a geographic hotspot for B. dendrobatidis biodiversity and the original source of these lineages that now parasitize amphibians worldwide.
  •  
3.
  • Reinke, Beth A, et al. (author)
  • Diverse aging rates in ectothermic tetrapods provide insights for the evolution of aging and longevity
  • 2022
  • In: Science. - : American Association for the Advancement of Science. - 0036-8075 .- 1095-9203. ; 376:6600, s. 1459-1466
  • Journal article (peer-reviewed)abstract
    • Comparative studies of mortality in the wild are necessary to understand the evolution of aging; yet, ectothermic tetrapods are underrepresented in this comparative landscape, despite their suitability for testing evolutionary hypotheses. We present a study of aging rates and longevity across wild tetrapod ectotherms, using data from 107 populations (77 species) of nonavian reptiles and amphibians. We test hypotheses of how thermoregulatory mode, environmental temperature, protective phenotypes, and pace of life history contribute to demographic aging. Controlling for phylogeny and body size, ectotherms display a higher diversity of aging rates compared with endotherms and include phylogenetically widespread evidence of negligible aging. Protective phenotypes and life-history strategies further explain macroevolutionary patterns of aging. Analyzing ectothermic tetrapods in a comparative context enhances our understanding of the evolution of aging.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view