SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Michels Paul A. M.) "

Search: WFRF:(Michels Paul A. M.)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aaron, F. D., et al. (author)
  • Multi-leptons with high transverse momentum at HERA
  • 2009
  • In: Journal of High Energy Physics. - : Springer Science and Business Media LLC. - 1029-8479. ; :10
  • Journal article (peer-reviewed)abstract
    • Events with at least two high transverse momentum leptons (electrons or muons) are studied using the H1 and ZEUS detectors at HERA with an integrated luminosity of 0.94 fb(-1). The observed numbers of events are in general agreement with the Standard Model predictions. Seven di- and tri-lepton events are observed in e(+)p collision data with a scalar sum of the lepton transverse momenta above 100 GeV while 1.94 +/- 0.17 events are expected. Such events are not observed in e(-)p collisions for which 1.19 +/- 0.12 are predicted. Total visible and differential di-electron and di-muon photoproduction cross sections are extracted in a restricted phase space dominated by photon-photon collisions.
  •  
2.
  • Klionsky, Daniel J., et al. (author)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • In: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Research review (peer-reviewed)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
3.
  • Klionsky, Daniel J., et al. (author)
  • Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes
  • 2008
  • In: Autophagy. - : Landes Bioscience. - 1554-8627 .- 1554-8635. ; 4:2, s. 151-175
  • Research review (peer-reviewed)abstract
    • Research in autophagy continues to accelerate,1 and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.2,3 There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi). Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes. This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response.
  •  
4.
  • Young, Iris D., et al. (author)
  • Structure of photosystem II and substrate binding at room temperature
  • 2016
  • In: Nature. - : Macmillan Publishers Ltd.. - 0028-0836 .- 1476-4687. ; 540:7633, s. 453-457
  • Journal article (peer-reviewed)abstract
    • Light-induced oxidation of water by photosystem II (PS II) in plants, algae and cyanobacteria has generated most of the dioxygen in the atmosphere. PS II, a membrane-bound multi-subunit pigment protein complex, couples the one-electron photochemistry at the reaction centre with the four-electron redox chemistry of water oxidation at the Mn4CaO5 cluster in the oxygen-evolving complex (OEC). Under illumination, the OEC cycles through five intermediate S-states (S0 to S4)1, in which S1 is the dark-stable state and S3 is the last semi-stable state before O–O bond formation and O2 evolution2,3. A detailed understanding of the O–O bond formation mechanism remains a challenge, and will require elucidation of both the structures of the OEC in the different S-states and the binding of the two substrate waters to the catalytic site4–6. Here we report the use of femtosecond pulses from an X-ray free electron laser (XFEL) to obtain damage-free, room temperature structures of dark-adapted (S1), two-flash illuminated (2F; S3-enriched), and ammonia-bound two-flash illuminated (2F-NH3; S3-enriched) PS II. Although the recent 1.95 Å resolution structure of PS II at cryogenic temperature using an XFEL7 provided a damage-free view of the S1 state, measurements at room temperature are required to study the structural landscape of proteins under functional conditions8,9, and also for in situ advancement of the S-states. To investigate the water-binding site(s), ammonia, a water analogue, has been used as a marker, as it binds to the Mn4CaO5 cluster in the S2 and S3 states10. Since the ammonia-bound OEC is active, the ammonia-binding Mn site is not a substrate water site10–13. This approach, together with a comparison of the native dark and 2F states, is used to discriminate between proposed O–O bond formation mechanisms.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4
Type of publication
journal article (2)
research review (2)
Type of content
peer-reviewed (4)
Author/Editor
Kominami, Eiki (2)
Simon, Hans-Uwe (2)
Mograbi, Baharia (2)
Lopez-Otin, Carlos (2)
Noda, Takeshi (2)
Perry, George (2)
show more...
Nishino, Ichizo (2)
Iwasaki, Akiko (2)
Brunk, Ulf T (2)
Yue, Zhenyu (2)
Johansen, Terje (2)
Gonzalez, Ramon (2)
Simonsen, Anne (2)
Zhu, Xiongwei (2)
Kroemer, Guido (2)
Simone, Cristiano (2)
Sandri, Marco (2)
Sulzer, David (2)
Terman, Alexei (2)
Kundu, Mondira (2)
Hoyer-Hansen, Maria (2)
Jaattela, Marja (2)
Martinet, Wim (2)
Sadoshima, Junichi (2)
Lü, Bo (2)
Ballabio, Andrea (2)
Lieberman, Andrew (2)
Stenmark, Harald (2)
Piacentini, Mauro (2)
Sasakawa, Chihiro (2)
Yoshimori, Tamotsu (2)
Klionsky, Daniel J. (2)
Abeliovich, Hagai (2)
Agostinis, Patrizia (2)
Baba, Misuzu (2)
Bi, Xiaoning (2)
Biard-Piechaczyk, Ma ... (2)
Bursch, Wilfried (2)
Camougrand, Nadine (2)
Cebollero, Eduardo (2)
Cecconi, Francesco (2)
Chen, Yingyu (2)
Chin, Lih-Shen (2)
Codogno, Patrice (2)
Coto-Montes, Ana (2)
Debnath, Jayanta (2)
Demarchi, Francesca (2)
Deretic, Vojo (2)
Djavaheri-Mergny, Mo ... (2)
Duszenko, Michael (2)
show less...
University
Linköping University (2)
Lund University (2)
University of Gothenburg (1)
Umeå University (1)
Uppsala University (1)
Karolinska Institutet (1)
show more...
Swedish University of Agricultural Sciences (1)
show less...
Language
English (4)
Research subject (UKÄ/SCB)
Natural sciences (3)
Medical and Health Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view