SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Migas Dmitri B.) "

Search: WFRF:(Migas Dmitri B.)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Migas, Dmitri B., et al. (author)
  • Orientation effects in morphology and electronic properties of anatase TiO2 one-dimensional nanostructures. I. Nanowires
  • 2014
  • In: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 16:20, s. 9479-9489
  • Journal article (peer-reviewed)abstract
    • By means of ab initio calculations we have revealed the existence of sizable anisotropy in electronic properties of anatase TiO2 nanowires with respect to orientation: nanowires with 001 , 100 and 110 axes are found to be direct band-gap, indirect band-gap and degenerate semiconductor materials, respectively. The degenerate semiconducting properties of 110 oriented TiO2 nanowires are predicted to be the intrinsic features closely connected with stoichiometry. A band-gap variation with nanowire diameter is also shown to display rather complex behavior characterized by a competition between quantum confinement and surface state effects that is fully compatible with the available contradictory experimental data. Finally, we propose a model to explain the band-gap variation with size in TiO2 nanowires, nanocrystals and thin films.
  •  
2.
  • Pašti, Igor, et al. (author)
  • Theoretical analysis of electrochromism of Ni-deficient nickel oxide - from bulk to surfaces
  • 2023
  • In: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 25:11, s. 7974-7985
  • Journal article (peer-reviewed)abstract
    • The development of new electrochromic materials and devices, like smart windows, has an enormous impact on the energy efficiency of modern society. One of the crucial materials in this technology is nickel oxide. Ni-deficient NiO shows anodic electrochromism, whose mechanism is still under debate. We use DFT+U calculations to show that Ni vacancy generation results in the formation of hole polarons localized at the two oxygens next to the vacancy. In the case of NiO bulk, upon Li insertion or injection of an extra electron into Ni-deficient NiO, one hole gets filled, and the hole bipolaron is converted into a hole polaron well-localized at one O atom, resulting from the transition between oxidized (colored) to reduced (bleached) state. In the case of the Ni-deficient NiO(001) surface, the qualitatively same picture is obtained upon embedding Li, Na, and K into the Ni surface vacancy, reinforcing the conclusion that the electron injection, resulting in the filling of the hole states, is responsible for the modulation of the optical properties of NiO. Hence, our results suggest a new mechanism of Ni-deficient NiO electrochromism not related to the change of the Ni oxidation states, i.e., the Ni2+/Ni3+ transition, but based on the formation and annihilation of hole polarons in oxygen p-states.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view