SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Minkov Ivaylo) "

Search: WFRF:(Minkov Ivaylo)

  • Result 1-10 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Felicissimo, Viviane, et al. (author)
  • A theoretical study of the role of the hydrogen bond on core ionization of the water dimer
  • 2005
  • In: Chemical Physics. - : Elsevier. - 0301-0104 .- 1873-4421. ; 312:1-3, s. 311-318
  • Journal article (peer-reviewed)abstract
    • Motivated by the interest in using X-ray spectra for probing of hydrogen bonded networks we developed a quantum model for simulations of the electronic-vibrational profile of the X-ray core photoelectron spectrum of the water dimer. It is found that the potential surfaces of the donor and acceptor O1s core-ionized states of this system display a qualitative difference. Large gradients of the potential in the core ionized state along some intermolecular coordinates combined with small vibrational frequencies breaks down completely the harmonic approximation. The band profiles are therefore treated using a quasi-continuum approximation. The weak hydrogen bonding and the drastic change of water dimer potential under core ionization is responsible for the anomalously strong vibrational broadening: 0.4 eV for the acceptor band and 0.6 eV for the donor band. The core ionization of the donor oxygen is accompanied by proton transfer which should be observable in X-ray fluorescence or Auger spectra.
  •  
2.
  • Gel'mukhanov, Faris, et al. (author)
  • Interchannel interference in resonant Auger scattering from fixed-in-space molecules as a technique for structure determination
  • 2004
  • In: Physical Review A. Atomic, Molecular, and Optical Physics. - 1050-2947 .- 1094-1622. ; 70:3, s. 032507-
  • Journal article (peer-reviewed)abstract
    • A method for structure determination of polyatomic molecules with equivalent atoms is suggested. The method is based on an interference pattern in the resonant Auger scattering process. This pattern is caused by interference of resonant Auger channels corresponding to a core hole localized on different equivalent atoms. The predicted effect can be observed in angular resolved electron-ion coincidence measurements or, alternatively, using the ordinary Auger technique on surface-oriented molecules.
  •  
3.
  • Hennies, F., et al. (author)
  • Dynamic interpretation of resonant x-ray Raman scattering : ethylene and benzene
  • 2007
  • In: Physical Review A. Atomic, Molecular, and Optical Physics. - 1050-2947 .- 1094-1622. ; 76:3, s. 032505-
  • Journal article (peer-reviewed)abstract
    • We present a dynamic interpretation of resonant x-ray Raman scattering where vibrationally selective excitation into molecular resonances has been employed in comparison with excitation into higher lying continuum states for condensed ethylene and benzene as molecular model systems. In order to describe the purely vibrational spectral loss features and coupled electronic and vibrational losses the one-step theory for resonant soft x-ray scattering is applied, taking multiple vibrational modes and vibronic coupling into account. The scattering profile is found to be strongly excitation energy dependent and to reflect the intermediate states dynamics of the scattering process. In particular, the purely vibrational loss features allow one to map the electronic ground state potential energy surface in light of the excited state dynamics. Our study of ethylene and benzene underlines the necessity of an explicit description of the coupled electronic and vibrational loss features for the assignment of spectral features observed in resonant x-ray Raman scattering at polyatomic systems, which can be done in both a time independent and a time dependent picture. The possibility to probe ground state vibrational properties opens a perspective to future applications of this photon-in-photon-out spectroscopy.
  •  
4.
  • Hennies, F., et al. (author)
  • Non-Adiabatic effects in Resonant Inelastic x-ray Scattering
  • 2005
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 95:16, s. 163002-
  • Journal article (peer-reviewed)abstract
    • We have studied the spectral features of resonant inelastic x-ray scattering of condensed ethylene with vibrational selectivity both experimentally and theoretically. Purely vibrational spectral loss features and coupled electronic and vibrational losses are observed. The one-step theory for resonant soft x-ray scattering is applied, taking multiple vibrational modes and vibronic coupling into account. Our investigation of ethylene underlines that the assignment of spectral features observed in resonant inelastic x-ray scattering of polyatomic systems requires an explicit description of the coupled electronic and vibrational loss features.
  •  
5.
  • Minkov, Ivaylo, et al. (author)
  • Core-excitations of biphenyl
  • 2005
  • In: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 109:7, s. 1330-1336
  • Journal article (peer-reviewed)abstract
    • High-resolution C(1s) near-edge X-ray absorption and X-ray photoionization spectra of the free biphenyl molecule are presented and theoretically analyzed in order to allow an assignment of the observed spectral features. Finite lifetime broadening, a high density of vibrational states, and a strong overlap of contributions from chemically different carbon atom sites only partially allow resolving the vibrational fine structure. However, the shape and width of the spectral profiles are strongly determined by both chemical shifts and vibronic effects. In particular, different from photoionization of valence levels, both types of core level spectra do not contain contributions from dihedral modes which are related to the twisting motion of the two phenyl rings. Contrary to naphthalene, C-H stretching modes are significantly enhanced in the core excitation spectra of biphenyl while the contributions from C-C stretching modes are reduced.
  •  
6.
  • Minkov, Ivaylo, et al. (author)
  • Core-excitations of naphthalene : Vibrational structure versus chemical shifts
  • 2004
  • In: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 121:12, s. 5733-5739
  • Journal article (peer-reviewed)abstract
    • The initial state chemical shifts and vibrational fine structure of core excitations of naphthalene were analyzed using high-resolution x-ray photoelectron emission (XPS) and near-edge x-ray absorption fine structure (NEXAFS) spectra. The carbon atoms at peripheral sites were found to experience a small chemical shift and exhibit similar charge-vibrational coupling. The C-H stretching modes provide significant contributions to overall shape of spectra in the XPS spectra. The results show that vibrational fine structure dominates by particular C-C stretching modes, and in XPS of C2 and C3 sites also by high-energy C-H stretching modes.
  •  
7.
  • Minkov, Ivaylo, 1979- (author)
  • Nuclear Dynamics in X-ray Absorption and Raman Scattering
  • 2006
  • Doctoral thesis (other academic/artistic)abstract
    • This thesis presents theoretical studies of several x-ray spectroscopies - x-ray absorption, x-ray photoelectron emission, radiative and non-radiative resonant Raman scattering spectroscopy. The main focus point is investigating the influence of nuclear dynamics on these spectra for a variety of small molecules - naphthalene, biphenyl, ethylene, the water dimer, HCl, CO. The theoretical tools used consist of the basic equations of the relevant x-ray spectroscopy. Wave packet methods are also used. The molecular parameters needed for our simulations are obtained through suitable quantum chemical calculations, based on either wave function or density functional methods. Our simulations are compared to experimental data, where available. Simulations of x-ray absorption and x-ray photoionization spectra for naphthalene and biphenyl show that the spectral shapes are heavily influenced by the joint effect of two factors -- chemical shifts and excitations of vibrational progression. Comparison between the two molecules and also comparison to a reference case -- benzene, provides useful insight into the molecular behavior under core excitation. In a further step, we consider the O1s x-ray photoelectron spectrum of the water dimer. A substantial broadening of the two bands originating from the donor and the acceptor oxygen is found. It is caused by excitations of soft intermolecular vibrational modes, associated with the hydrogen bond. Another strong influence of the nuclear dynamics is clearly seen in the resonant x-ray Raman scattering of HCl. Vibrational collapse is observed experimentally and confirmed theoretically for distinctive situations. This effect allows to eliminate completely the vibrational broadening, and hence, considerably increase the spectral resolution. We considered also the vibrational dynamics in resonant soft x-ray Raman scattering from ethylene. The importance of vibronic coupling and symmetry effects is discussed and emphasized. We obtained excellent agreement with the experimental data. We predict an interference effect in the resonant Auger scattering from fixed-in-space molecules. By exciting a molecule to a dissociative state and measuring the angular distribution of the Auger electrons in coincidence with the molecular ion, one can observe this effect. The interference pattern can be used after Fourier transformation for extracting structural data about the studied system. We have found that two-center interference leads to an enhancement of the recoil effect. Finally, it is shown that core excitation to doubly-excited dissociative Pi state is accompanied by Doppler splitting of the atomic peak in resonant Auger scattering from carbon monoxide.
  •  
8.
  • Minkov, Ivaylo (author)
  • Theoretical studies of X-ray induced nuclear dynamics
  • 2005
  • Licentiate thesis (other academic/artistic)abstract
    • The present thesis is a theoretical study of several x-ray spectroscopies { x-ray absorption, xray photoelectron, radiative and non-radiative resonant Raman scattering spectroscopy. The main focus point is investigating the role of the nuclear dynamics in molecules (naphthalene, biphenyl, the water dimer, HCl) on these spectra. The theoretical tools we use consist of the basic equations of the relevant x-ray spectroscopy. Wave packet methods are also used. The molecular parameters needed for our simulations are obtained through suitable quantum chemical calculations, mainly based on either wave function or density functional methods. Our simulations are compared with experimental data, where available. Simulations of x-ray absorption and x-ray photoionization spectra for naphthalene and biphenyl show that the spectral shapes are heavily inuenced by the joint e ect of two factors { chemical shifts and excitations of vibrational progression. In both of the studied molecules, similar vibrational modes are excited, giving rise to a signi cant vibrational broadening of the spectra. Comparison between the two molecules and also comparison to the reference case { benzene, provides useful insight into the molecular behavior under core excitation. In a further step, we consider the O1s x-ray photoelectron spectrum of the water dimer. A substantial broadening of the two bands originating from the donor and the acceptor oxygen is found. It is caused by excitations of soft intermolecular vibrational modes, associated with the hydrogen bond. Another strong inuence of the nuclear dynamics is clearly seen in the resonant x-ray Raman scattering of HCl. Vibrational collapse is observed experimentally and con rmed theoretically for two cases: resonant excitation of the K line and o -resonant excitation of the elastic peak. These two collapses can be strictly realized for excitations in the hard x-ray region. Our considerations show that using this technique, one can eliminate the broadenings caused by the lifetime of the core excited state and the vibrational broadening, and hence, considerably increase the spectral resolution. Finally, we predict an interference e ect in the resonant Auger scattering from xed-inspace molecules. By exciting a molecule to a dissociative state and measuring the angular distribution of the Auger electrons in coincidence with the molecular ion, one can observe this e ect. The interference pattern can be used after Fourier transformation for extracting structural data about the studied system.
  •  
9.
  • Polyutov, Sergey, et al. (author)
  • Interplay of one-and two-step channels in electrovibrational two-photon absorption
  • 2005
  • In: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 109:42, s. 9507-9513
  • Journal article (peer-reviewed)abstract
    • We present a theory of two-photon absorption that addresses the formation of spectral shapes taking the vibrational degrees of freedom into account. The theory is used to rationalize the observed differences between the spectral shapes of one- and two-photon absorption. We find that the main cause of these differences is that the two-step and coherent two-photon spectral bands are different even considering a single final state. Our formalism is applied to the N101 molecule (p-nitro-p'-diphenylamine stilbene), which was recently studied experimentally. Simulations show that the two-step two-photon electrovibrational absorption results in a blue shift of the absorption spectrum in agreement with the measurements.
  •  
10.
  • Polyutov, Sergey, et al. (author)
  • Spectral profiles of two-photon absorption : Coherent versus two-step two-photon absorption
  • 2005
  • In: Organic and Nanocomposite Optical Materials. - 1558997946 ; , s. 3-12
  • Conference paper (peer-reviewed)abstract
    • We present a theory of two-photon absorption in solutions which addresses the, formation of spectral shapes taking account of the vibrational degrees of freedom. The theory is used to rationalize observed differences between spectral shapes of one- and two-photon absorption. We elaborate Oil two underlying causes. one trivial and one non-trivial, behind these differences. The first refers simply to the fact that the set of excited electronic states constituting the spectra, will have different relative cross sections for one- and two- photon absorption. The second reason is that the two-step and coherent two-photon absorption processes are competing, making the one- and two-photon spectral bands different even considering a, single final state. The theory is applied to the N-101 molecule [di-phenyl-amino-nitro-stilbene] which was recently studied experimentally in the paper.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view