SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Moeslinger Anja) "

Search: WFRF:(Moeslinger Anja)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Goetz, Charlotte, et al. (author)
  • Solar Wind Protons in the Diamagnetic Cavity at Comet 67P/Churyumov-Gerasimenko
  • 2023
  • In: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 128:4
  • Journal article (peer-reviewed)abstract
    • The plasma environment at a comet can be divided into different regions with distinct plasma characteristics. Two such regions are the solar wind ion cavity, which refers to the part of the outer coma that does not contain any solar wind ions anymore; and the diamagnetic cavity, which is the region of unmagnetized plasma in the innermost coma. From theory and previous observations, it was thought that under usual circumstances no solar wind ion should be observable near or inside of the diamagnetic cavity. For the first time, we report on five observations that show that protons near solar wind energies can also be found inside the diamagnetic cavity. We characterize these proton signatures, where and when they occur, and discuss possible mechanisms that could lead to protons penetrating the inner coma and traversing the diamagnetic cavity boundary. By understanding these observations, we hope to better understand the interaction region of the comet with the solar wind under nonstandard conditions. The protons detected inside the diamagnetic cavity have directions and energies consistent with protons of solar wind origin. The five events occur only at intermediate gas production rates and low cometocentric distances. Charge transfer reactions, high solar wind dynamic pressure and a neutral gas outburst can be ruled out as causes. We suggest that the anomalous appearance of protons in the diamagnetic cavity is due to a specific solar wind configuration where the solar wind velocity is parallel to the interplanetary magnetic field, thus inhibiting mass-loading and deflection.
  •  
2.
  • Moeslinger, Anja, et al. (author)
  • Indirect observations of electric fields at comet 67P
  • 2023
  • In: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 128:9
  • Journal article (peer-reviewed)abstract
    • No spacecraft visiting a comet has been equipped with instruments to directly measure the static electric field. However, the electric field can occasionally be estimated indirectly by observing its effects on the ion velocity distribution. We present such observations made by the Rosetta spacecraft on 19 April 2016, 35 km from the nucleus. At this time comet 67P was at a low outgassing rate and the plasma environment was relatively stable. The ion velocity distributions show the cometary ions on the first half of their gyration. We estimate the bulk drift velocity and the gyration speed from the distributions. By using the local measured magnetic field and assuming an E × B drift of the gyrocentre, we get an estimate for the average electric field driving this ion motion. We analyze a period of 13 hr, during which the plasma environment does not change drastically. We find that the average strength of the perpendicular electric field component is 0.21 mV/m. The direction of the electric field is mostly anti-sunward. This is in agreement with previous results based on different methods.
  •  
3.
  • Williamson, H.N., et al. (author)
  • Development of a cometosheath at comet 67P/Churyumov-Gerasimenko : a case study comparison of Rosetta observations
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 660
  • Journal article (peer-reviewed)abstract
    • Context: The ionosphere of a comet is known to deflect the solar wind through mass loading, but the interaction is dependent on cometary activity. We investigate the details of this process at comet 67P using the Rosetta Ion Composition Analyzer.Aims: This study aims to compare the interaction of the solar wind and cometary ions during two different time periods in the Rosetta mission.Methods: We compared both the integrated ion moments (density, velocity, and momentum flux) and the velocity distribution functions for two days, four months apart. The velocity distribution functions were projected into a coordinate system dependent on the magnetic field direction and averaged over three hours.Results: The first case shows highly scattered H+ in both ion moments and velocity distribution function. The He2+ ions are somewhat scattered, but less so, and appear more like those of H2O+ pickup ions. The second case shows characteristic evidence of mass-loading, where the solar wind species are deflected, but the velocity distribution function is not significantly changed.Conclusions. The distributions of H+ in the first case, when compared to He2+ and H2O+ pickup ions, are indicative of a narrow cometosheath on the scale of the H+ gyroradius. Thus, He2+ and H2O+, with larger gyroradii, are largely able to pass through this cometosheath. An examination of the momentum flux tensor suggests that all species in the first case have a significant non-gyrotropic momentum flux component that is higher than that of the second mass-loaded case. Mass loading is not a sufficient explanation for the distribution functions and momentum flux tensor in the first case, and so we assume this is evidence of bow shock formation.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view