SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Mollby H) "

Search: WFRF:(Mollby H)

  • Result 1-10 of 14
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Katouli, M., et al. (author)
  • Host species-specific translocation of Escherichia coli
  • 2009
  • In: European Journal of Clinical Microbiology and Infectious Diseases. - : Springer Science and Business Media LLC. - 0934-9723 .- 1435-4373. ; 28:9, s. 1095-1103
  • Journal article (peer-reviewed)abstract
    • The purpose of this paper is to investigate the rate of translocation of Escherichia coli strains in different experimental/animal models. Four proficient translocating E. coli strains isolated from mesenteric lymph nodes (MLNs) and/or the blood of rats (strains KIC-1 and KIC-2), from a fatal case of pancreatitis (HMLN-1) and from pigs (PC-1 isolated in this study) were tested for their ability to translocate across two host species and the Caco-2 cell line as a model of the human gut epithelium. HMLN-1 was found in the MLNs of all 15 pigs tested. This strain, however, did not translocate in any rats and only colonised the caecum of four rats in small numbers. HMLN-1 and PC-1 were the dominant translocating strains in Caco-2 cells compared to KIC-1 and KIC-2, which were found to translocate at a lower rate in pigs and in Caco-2 cells. The rate of translocation of PC-1 in rats was also very low compared to KIC-1 and KIC-2. We suggest that, in studies aiming to investigate the mechanism of translocation of E. coli strains isolated from humans, rats may not be an appropriate animal model and that the Caco-2 cells or pigs are more suitable in vitro and in vivo models, respectively.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Navarro, PC, et al. (author)
  • Antibiotic resistance in environmental Escherichia coli - a simple screening method for simultaneous typing and resistance determination
  • 2014
  • In: Journal of water and health. - : IWA Publishing. - 1477-8920 .- 1996-7829. ; 12:4, s. 692-701
  • Journal article (peer-reviewed)abstract
    • We describe a simple and standardised screening system (AREB) for surveillance of antibiotic resistant bacteria in the environment. The system consists of 96 well microplates containing eight sets of breakpoint amounts of 10 different antibiotics. The incubated microplates are read by a desktop scanner and the plate images are analysed by special software that automatically presents the resistance data. The AREB method is combined with a rapid typing method, the PhenePlate system, which yields information on the diversity of the bacteria in the studied samples, and on the possible prevalence of resistant clones. In order to demonstrate the usage of AREB, a comparative study on the resistance situation among 970 Escherichia coli isolates from sewage and recipient water in Sweden, Norway and Chile, was performed. Resistance rates to all antibiotics were markedly higher in hospital sewage than in other samples. Our data indicate that the AREB system is useful for comparing resistance rates among E. coli and other environmental indicator bacteria in different countries/regions. Simple handling and automatic data evaluation, combined with low cost, facilitate large studies involving several thousands of isolates.
  •  
9.
  •  
10.
  • Paulshus, E., et al. (author)
  • Escherichia coli ST2797 Is Abundant in Wastewater and Might Be a Novel Emerging Extended-Spectrum Beta-Lactamase E. coli
  • 2023
  • In: Microbiology Spectrum. - 2165-0497. ; 11:4
  • Journal article (peer-reviewed)abstract
    • The incidence of drug-resistant bacteria found in the environment is increasing together with the levels of antibiotic-resistant bacteria that cause infections. The COVID-19 pandemic has shed new light on the importance of monitoring emerging threats and finding early warning systems. The increasing prevalence of antibiotic-resistant bacteria is an emerging threat to global health. The analysis of antibiotic-resistant enterobacteria in wastewater can indicate the prevalence and spread of certain clonal groups of multiresistant bacteria. In a previous study of Escherichia coli that were isolated from a pump station in Norway over 15 months, we found a recurring E. coli clone that was resistant to trimethoprim, ampicillin, and tetracycline in 201 of 3,123 analyzed isolates (6.1%). 11 representative isolates were subjected to whole-genome sequencing and were found to belong to the MLST ST2797 E. coli clone with plasmids carrying resistance genes, including bla(TEM-1B), sul2, dfrA7, and tetB. A phenotypic comparison of the ST2797 isolates with the uropathogenic ST131 and ST648 that were repeatedly identified in the same wastewater samples revealed that the ST2797 isolates exhibited a comparable capacity for temporal survival in wastewater, greater biofilm formation, and similar potential for the colonization of mammalian epithelial cells. ST2797 has been isolated from humans and has been found to carry extended spectrum beta-lactamase (ESBL) genes in other studies, suggesting that this clonal type is an emerging ESBL E. coli. Collectively, these findings show that ST2797 was more ubiquitous in the studied wastewater than were the infamous ST131 and ST648 and that ST2797 may have similar abilities to survive in the environment and cause infections in humans.IMPORTANCE The incidence of drug-resistant bacteria found in the environment is increasing together with the levels of antibiotic-resistant bacteria that cause infections. The COVID-19 pandemic has shed new light on the importance of monitoring emerging threats and finding early warning systems. Therefore, to mitigate the antimicrobial resistance burden, the monitoring and early identification of antibiotic-resistant bacteria in hot spots, such as wastewater treatment plants, are required to combat the occurrence and spread of antibiotic-resistant bacteria. Here, we applied a PhenePlate system as a phenotypic screening method for genomic surveillance and discovered a dominant and persistent E. coli clone ST2797 with a multidrug resistance pattern and equivalent phenotypic characteristics to those of the major pandemic lineages, namely, ST131 and ST648, which frequently carry ESBL genes. This study highlights the continuous surveillance and report of multidrug resistant bacteria with the potential to spread in One Health settings.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view