SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Molodtsova Olga V) "

Search: WFRF:(Molodtsova Olga V)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chaika, Alexander N., et al. (author)
  • Rotated domain network in graphene on cubic-SiC(001)
  • 2014
  • In: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 25:13
  • Journal article (peer-reviewed)abstract
    • The atomic structure of the cubic-SiC(001) surface during ultra-high vacuum graphene synthesis has been studied using scanning tunneling microscopy (STM) and low-energy electron diffraction. Atomically resolved STM studies prove the synthesis of a uniform, millimeter-scale graphene overlayer consisting of nanodomains rotated by +/- 13.5 degrees relative to the < 110 >-directed boundaries. The preferential directions of the domain boundaries coincide with the directions of carbon atomic chains on the SiC(001)-c(2 x 2) reconstruction, fabricated prior to graphene synthesis. The presented data show the correlation between the atomic structures of the SiC(001)-c(2 x 2) surface and the graphene/SiC(001) rotated domain network and pave the way for optimizing large-area graphene synthesis on low-cost cubic-SiC(001)/Si(001) wafers.
  •  
2.
  • Wu, Han-Chun, et al. (author)
  • Large positive in-plane magnetoresistance induced by localized states at nanodomain boundaries in graphene
  • 2017
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Journal article (peer-reviewed)abstract
    • Graphene supports long spin lifetimes and long diffusion lengths at room temperature, making it highly promising for spintronics. However, making graphene magnetic remains a principal challenge despite the many proposed solutions. Among these, graphene with zig-zag edges and ripples are the most promising candidates, as zig-zag edges are predicted to host spin-polarized electronic states, and spin-orbit coupling can be induced by ripples. Here we investigate the magnetoresistance of graphene grown on technologically relevant SiC/Si(001) wafers, where inherent nanodomain boundaries sandwich zig-zag structures between adjacent ripples of large curvature. Localized states at the nanodomain boundaries result in an unprecedented positive in-plane magnetoresistance with a strong temperature dependence. Our work may offer a tantalizing way to add the spin degree of freedom to graphene.
  •  
3.
  • Aristov, Victor Yu., et al. (author)
  • Graphene Synthesis on Cubic SiC/Si Wafers. Perspectives for Mass Production of Graphene-Based Electronic Devices
  • 2010
  • In: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 10:3, s. 992-995
  • Journal article (peer-reviewed)abstract
    • The outstanding properties of graphene, a single graphite layer, render it a top candidate for substituting silicon in future electronic devices, The so far exploited synthesis approaches, however, require conditions typically achieved in specialized laboratories and result in graphene sheets whose electronic properties are often altered by interactions with substrate materials. The development of graphene-based technologies requires an economical fabrication method compatible with mass production. Here we demonstrate for the fist Lime the feasibility of graphene synthesis on commercially available cubic SiC/Si substrates of >300 mm in diameter, which result in graphene flakes electronically decoupled from the substrate. After optimization of the preparation procedure, the proposed synthesis method can represent a further big step toward graphene-based electronic technologies.
  •  
4.
  • Babenkov, Sergey V., et al. (author)
  • Hybrid organic-inorganic systems formed by self-assembled gold nanoparticles in CuPcF4 molecular crystal
  • 2016
  • In: Organic Electronics. - : Elsevier BV. - 1566-1199. ; 32, s. 228-236
  • Journal article (peer-reviewed)abstract
    • In this work we have fabricated and studied hybrid organic-inorganic nanocomposite system formed by gold nanoparticles self-assembled in organic semiconductor thin film - copper tetrafluorophthalocyanine (CuPcF4). By means of Photoelectron Spectroscopy and Transmission Electron Microscopy (TEM) the evolution of the morphology and electronic structure of the system as a function of nominal gold content have been investigated. The gold atoms, deposited onto the CuPcF4 surface, diffuse into the organic matrix and self-assemble to nanoparticles in a well-defined manner with a narrow size distribution, which depends on the amount of deposited gold. Using High-Resolution TEM, we were able to observe the atomic planes of single gold nanoparticles and their coalescence processes. Photoelectron spectroscopy has not revealed any detectable chemical reaction between gold and organic. However, the strong upward band bending, induced by gold nanoparticles in the organic film, takes place.
  •  
5.
  • Chaika, Alexander N., et al. (author)
  • Continuous wafer-scale graphene on cubic-SiC(001)
  • 2013
  • In: Nano Reseach. - : Springer Science and Business Media LLC. - 1998-0124 .- 1998-0000. ; 6:8, s. 562-570
  • Journal article (peer-reviewed)abstract
    • The atomic and electronic structure of graphene synthesized on commercially available cubic-SiC(001)/Si(001) wafers have been studied by low energy electron microscopy (LEEM), scanning tunneling microscopy (STM), low energy electron diffraction (LEED), and angle resolved photoelectron spectroscopy (ARPES). LEEM and STM data prove the wafer-scale continuity and uniform thickness of the graphene overlayer on SiC(001). LEEM, STM and ARPES studies reveal that the graphene overlayer on SiC(001) consists of only a few monolayers with physical properties of quasi-freestanding graphene. Atomically resolved STM and micro-LEED data show that the top graphene layer consists of nanometersized domains with four different lattice orientations connected through the aOE (c) 110 >-directed boundaries. ARPES studies reveal the typical electron spectrum of graphene with the Dirac points close to the Fermi level. Thus, the use of technologically relevant SiC(001)/Si(001) wafers for graphene fabrication represents a realistic way of bridging the gap between the outstanding properties of graphene and their applications.
  •  
6.
  • Wu, Han-Chun, et al. (author)
  • Transport Gap Opening and High On-Off Current Ratio in Trilayer Graphene with Self-Aligned Nanodomain Boundaries.
  • 2015
  • In: ACS Nano. - : American Chemical Society (ACS). - 1936-086X .- 1936-0851. ; 9:9, s. 8967-8975
  • Journal article (peer-reviewed)abstract
    • Trilayer graphene exhibits exceptional electronic properties that are of interest both for fundamental science and for technological applications. The ability to achieve a high on-off current ratio is the central question in this field. Here, we propose a simple method to achieve a current on-off ratio of 10(4) by opening a transport gap in Bernal-stacked trilayer graphene. We synthesized Bernal-stacked trilayer graphene with self-aligned periodic nanodomain boundaries (NBs) on the technologically relevant vicinal cubic-SiC(001) substrate and performed electrical measurements. Our low-temperature transport measurements clearly demonstrate that the self-aligned periodic NBs can induce a charge transport gap greater than 1.3 eV. More remarkably, the transport gap of ∼0.4 eV persists even at 100 K. Our results show the feasibility of creating new electronic nanostructures with high on-off current ratios using graphene on cubic-SiC.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view