SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Moran Carmel M.) "

Search: WFRF:(Moran Carmel M.)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bacou, Marion, et al. (author)
  • Development of Preclinical Ultrasound Imaging Techniques to Identify and Image Sentinel Lymph Nodes in a Cancerous Animal Model
  • 2022
  • In: Cancers. - : MDPI AG. - 2072-6694. ; 14:3
  • Journal article (peer-reviewed)abstract
    • Lymph nodes (LNs) are believed to be the first organs targeted by colorectal cancer cells detached from a primary solid tumor because of their role in draining interstitial fluids. Better detection and assessment of these organs have the potential to help clinicians in stratification and designing optimal design of oncological treatments for each patient. Whilst highly valuable for the detection of primary tumors, CT and MRI remain limited for the characterization of LNs. B-mode ultrasound (US) and contrast-enhanced ultrasound (CEUS) can improve the detection of LNs and could provide critical complementary information to MRI and CT scans; however, the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) guidelines advise that further evidence is required before US or CEUS can be recommended for clinical use. Moreover, knowledge of the lymphatic system and LNs is relatively limited, especially in preclinical models. In this pilot study, we have created a mouse model of metastatic cancer and utilized 3D high-frequency ultrasound to assess the volume, shape, and absence of hilum, along with CEUS to assess the flow dynamics of tumor-free and tumor-bearing LNs in vivo. The aforementioned parameters were used to create a scoring system to predict the likelihood of a disease-involved LN before establishing post-mortem diagnosis with histopathology. Preliminary results suggest that a sum score of parameters may provide a more accurate diagnosis than the LN size, the single parameter currently used to predict the involvement of an LN in disease.
  •  
2.
  • Sjostrand, Sandra, et al. (author)
  • Contrast enhanced magneto-motive ultrasound in lymph nodes-modelling and pre-clinical imaging using magnetic microbubbles
  • 2022
  • In: 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022. - 1557-170X. - 9781728127828 ; 2022-July, s. 194-197
  • Conference paper (peer-reviewed)abstract
    • Despite advances in MRI, the detection and characterisation of lymph nodes in rectal cancer remains complex, especially when assessing the response to neo-adjuvant treatment. An alternative approach is functional imaging, previously shown to aid characterization of cancer tissues. We report proof-of-concept of the novel technique Contrast-Enhanced Magneto-Motive Ultrasound (CE-MMUS) to recover information relating to local perfusion and lymphatic drainage, and interrogate tissue mechanical properties through magnetically induced tissue deformations. The feasibility of the proposed application was explored using a combination of pre-clinical ultrasound imaging and finite element analysis. First, contrast enhanced ultrasound imaging on one wild type mouse recorded lymphatic drainage of magnetic microbubbles after bolus injection. Second, preliminary CE-MMUS data were acquired as a proof of concept. Third, the magneto-mechanical interactions of a magnetic microbubble with an elastic solid were simulated using finite element software. Accumulation of magnetic microbubbles in the inguinal lymph node was verified using contrast enhanced ultrasound, with peak enhancement occurring 3.7 s post-injection. Preliminary CE-MMUS indicates the presence of magnetic contrast agent in the lymph node. The finite element analysis explores how the magnetic force is transferred to motion of the solid, which depends on elasticity and bubble radius, indicating an inverse relation with displacement. Combining magnetic microbubbles with MMUS could harness the advantages of both techniques, to provide perfusion information, robust lymph node delineation and characterisation based on mechanical properties. Clinical Relevance-Robust detection and characterisation of lymph nodes could be aided by visualising lymphatic drainage of magnetic microbubbles using contrast enhanced ultrasound imaging and magneto-motion, which is dependent on tissue mechanical properties.
  •  
3.
  • Sjöstrand, Sandra, et al. (author)
  • Modelling of magnetic microbubbles to evaluate contrast enhanced magnetomotive ultrasound in lymph nodes – a pre-clinical study
  • 2022
  • In: British Journal of Radiology. - : British Institute of Radiology. - 0007-1285 .- 1748-880X. ; 95:1135
  • Journal article (peer-reviewed)abstract
    • Objectives: Despite advances in MRI the detection and characterisation of lymph nodes in rectal cancer remains complex, especially when assessing the response to neoadjuvant treatment. An alternative approach is functional imaging, previously shown to aid characterisation of cancer tissues. We report proof of concept of the novel technique Contrast-Enhanced Magneto-Motive Ultrasound (CE-MMUS) to recover information relating to local perfusion and lymphatic drainage, and interro-gate tissue mechanical properties through magnetically induced deformations. Methods: The feasibility of the proposed application was explored using a combination of experimental animal and phantom ultrasound imaging, along with finite element analysis. First, contrast-enhanced ultrasound imaging on one wild type mouse recorded lymphatic drainage of magnetic microbubbles after bolus injection. Second, tissue phantoms were imaged using MMUS to illustrate the force-and elasticity dependence of the magneto-motion. Third, the magnetomechanical interactions of a magnetic microbubble with an elastic solid were simu-lated using finite element software. Results: Accumulation of magnetic microbubbles in the inguinal lymph node was verified using contrast enhanced ultrasound, with peak enhancement occur-ring 3.7 s post-injection. The magnetic microbubble gave rise to displacements depending on force, elasticity, and bubble radius, indicating an inverse relation between displacement and the latter two. Conclusion: Combining magnetic microbubbles with MMUS could harness the advantages of both techniques, to provide perfusion information, robust lymph node delineation and characterisation based on mechanical properties. Advances in knowledge: (a) Lymphatic drainage of magnetic microbubbles visualised using contrast-enhanced ultrasound imaging and (b) magnetomechan-ical interactions between such bubbles and surrounding tissue could both contribute to (c) robust detection and characterisation of lymph nodes.
  •  
4.
  • Kuhn, Joel, et al. (author)
  • Tri-modal imaging of gold-dotted magnetic nanoparticles for magnetic resonance imaging, computed tomography and intravascular ultrasound : an in vitro study
  • 2020
  • In: Nanomedicine. - : Future Medicine Ltd. - 1743-5889 .- 1748-6963. ; 15:25
  • Journal article (peer-reviewed)abstract
    • Aim: To examine the multimodal contrasting ability of gold-dotted magnetic nanoparticles (Au*MNPs) for magnetic resonance (MR), computed tomography (CT) and intravascular ultrasound (IVUS) imaging.Materials & methods: Au*MNPs were prepared by adapting an impregnation method, without using surface capping reagents and characterized (transmission electron microscopy, x-ray diffraction and Fourier-transform infrared spectroscopy) with theirin vitrocytotoxicity assessed, followed by imaging assessments.Results: The contrast-enhancing ability of Au*MNPs was shown to be concentration-dependent across MR, CT and IVUS imaging. The Au content of the Au*MNP led to evident increases of the IVUS signal.Conclusion: We demonstrated that Au*MNPs showed concentration-dependent contrast-enhancing ability in MRI and CT imaging, and for the first-time in IVUS imaging due to the Au content. These Au*MNPs are promising toward solidifying tri-modal imaging-based theragnostics.
  •  
5.
  • Sande, Ragnar, et al. (author)
  • Safety Aspects of Perinatal Ultrasound
  • 2021
  • In: Ultraschall in der Medizin. - : Georg Thieme Verlag KG. - 0172-4614. ; 42:6, s. 580-598
  • Journal article (peer-reviewed)abstract
    • Ultrasound safety is of particular importance in fetal and neonatal scanning. Fetal tissues are vulnerable and often still developing, the scanning depth may be low, and potential biological effects have been insufficiently investigated. On the other hand, the clinical benefit may be considerable. The perinatal period is probably less vulnerable than the first and second trimesters of pregnancy, and ultrasound is often a safer alternative to other diagnostic imaging modalities. Here we present step-by-step procedures for obtaining clinically relevant images while maintaining ultrasound safety. We briefly discuss the current status of the field of ultrasound safety, with special attention to the safety of novel modalities, safety considerations when ultrasound is employed for research and education, and ultrasound of particularly vulnerable tissues, such as the neonatal lung. This CME is prepared by ECMUS, the safety committee of EFSUMB, with contributions from OB/GYN clinicians with a special interest in ultrasound safety.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view