SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Moran Mary A) "

Search: WFRF:(Moran Mary A)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Bendall, Matthew L, et al. (author)
  • Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations
  • 2016
  • In: The ISME Journal. - : Springer Science and Business Media LLC. - 1751-7362 .- 1751-7370. ; 10:7, s. 1589-1601
  • Journal article (peer-reviewed)abstract
    • Multiple models describe the formation and evolution of distinct microbial phylogenetic groups. These evolutionary models make different predictions regarding how adaptive alleles spread through populations and how genetic diversity is maintained. Processes predicted by competing evolutionary models, for example, genome-wide selective sweeps vs gene-specific sweeps, could be captured in natural populations using time-series metagenomics if the approach were applied over a sufficiently long time frame. Direct observations of either process would help resolve how distinct microbial groups evolve. Here, from a 9-year metagenomic study of a freshwater lake (2005-2013), we explore changes in single-nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in 30 bacterial populations. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied by >1000-fold among populations. SNP allele frequencies also changed dramatically over time within some populations. Interestingly, nearly all SNP variants were slowly purged over several years from one population of green sulfur bacteria, while at the same time multiple genes either swept through or were lost from this population. These patterns were consistent with a genome-wide selective sweep in progress, a process predicted by the /`ecotype model/' of speciation but not previously observed in nature. In contrast, other populations contained large, SNP-free genomic regions that appear to have swept independently through the populations prior to the study without purging diversity elsewhere in the genome. Evidence for both genome-wide and gene-specific sweeps suggests that different models of bacterial speciation may apply to different populations coexisting in the same environment.
  •  
3.
  • Singh, Vivek, et al. (author)
  • Structural basis of LRPPRC-SLIRP-dependent translation by the mitoribosome
  • 2022
  • Other publication (other academic/artistic)abstract
    • In mammalian mitochondria, mRNAs are co-transcriptionally stabilized by the protein factor LRPPRC. Here, we characterize LRPPRC as an mRNA delivery factor and report its cryo-EM structure in complex with SLIRP, mRNA and the mitoribosome. The structure shows that LRPPRC associates with the mitoribosomal proteins mS39 and the N-terminus of mS31 through recognition of eight of the LRPPRC helical repeats. Together, the proteins form a corridor for hand-off the mRNA. The mRNA is directly bound to SLIRP, which also has a stabilizing function for LRPPRC. To delineate the effect of LRPPRC on individual mitochondrial transcripts, we used an RNAseq approach, metabolic labeling and mitoribosome profiling that showed a major influence onND1, ND2, ATP6, COX1, COX2,andCOX3mRNA translation efficiency. Taken together, our data suggest that LRPPRC-SLIRP does not preexist on the mitoribosome as its structural element but rather acts in recruitment of specific mRNAs to modulate their translation. Collectively, the data define LRPPRC-SLIRP as a regulator of the mitochondrial gene expression system.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view