SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Morrow Ted) "

Search: WFRF:(Morrow Ted)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Arndt, D. S., et al. (author)
  • State of the Climate in 2016
  • 2017
  • In: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 98:8, s. S1-S280
  • Journal article (peer-reviewed)abstract
    • In 2016, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-continued to increase and reach new record highs. The 3.5 +/- 0.1 ppm rise in global annual mean carbon dioxide from 2015 to 2016 was the largest annual increase observed in the 58-year measurement record. The annual global average carbon dioxide concentration at Earth's surface surpassed 400 ppm (402.9 +/- 0.1 ppm) for the first time in the modern atmospheric measurement record and in ice core records dating back as far as 800000 years. One of the strongest El Nino events since at least 1950 dissipated in spring, and a weak La Nina evolved later in the year. Owing at least in part to the combination of El Nino conditions early in the year and a long-term upward trend, Earth's surface observed record warmth for a third consecutive year, albeit by a much slimmer margin than by which that record was set in 2015. Above Earth's surface, the annual lower troposphere temperature was record high according to all datasets analyzed, while the lower stratospheric temperature was record low according to most of the in situ and satellite datasets. Several countries, including Mexico and India, reported record high annual temperatures while many others observed near-record highs. A week-long heat wave at the end of April over the northern and eastern Indian peninsula, with temperatures surpassing 44 degrees C, contributed to a water crisis for 330 million people and to 300 fatalities. In the Arctic the 2016 land surface temperature was 2.0 degrees C above the 1981-2010 average, breaking the previous record of 2007, 2011, and 2015 by 0.8 degrees C, representing a 3.5 degrees C increase since the record began in 1900. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 24 March, the sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, tying with 2015 at 7.2% below the 1981-2010 average. The September 2016 Arctic sea ice minimum extent tied with 2007 for the second lowest value on record, 33% lower than the 1981-2010 average. Arctic sea ice cover remains relatively young and thin, making it vulnerable to continued extensive melt. The mass of the Greenland Ice Sheet, which has the capacity to contribute similar to 7 m to sea level rise, reached a record low value. The onset of its surface melt was the second earliest, after 2012, in the 37-year satellite record. Sea surface temperature was record high at the global scale, surpassing the previous record of 2015 by about 0.01 degrees C. The global sea surface temperature trend for the 21st century-to-date of +0.162 degrees C decade(-1) is much higher than the longer term 1950-2016 trend of +0.100 degrees C decade(-1). Global annual mean sea level also reached a new record high, marking the sixth consecutive year of increase. Global annual ocean heat content saw a slight drop compared to the record high in 2015. Alpine glacier retreat continued around the globe, and preliminary data indicate that 2016 is the 37th consecutive year of negative annual mass balance. Across the Northern Hemisphere, snow cover for each month from February to June was among its four least extensive in the 47-year satellite record. Continuing a pattern below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska and at the Canadian observatory on northernmost Ellesmere Island. In the Antarctic, record low monthly surface pressures were broken at many stations, with the southern annular mode setting record high index values in March and June. Monthly high surface pressure records for August and November were set at several stations. During this period, record low daily and monthly sea ice extents were observed, with the November mean sea ice extent more than 5 standard deviations below the 1981-2010 average. These record low sea ice values contrast sharply with the record high values observed during 2012-14. Over the region, springtime Antarctic stratospheric ozone depletion was less severe relative to the 1991-2006 average, but ozone levels were still low compared to pre-1990 levels. Closer to the equator, 93 named tropical storms were observed during 2016, above the 1981-2010 average of 82, but fewer than the 101 storms recorded in 2015. Three basins-the North Atlantic, and eastern and western North Pacific-experienced above-normal activity in 2016. The Australian basin recorded its least active season since the beginning of the satellite era in 1970. Overall, four tropical cyclones reached the Saffir-Simpson category 5 intensity level. The strong El Nino at the beginning of the year that transitioned to a weak La Nina contributed to enhanced precipitation variability around the world. Wet conditions were observed throughout the year across southern South America, causing repeated heavy flooding in Argentina, Paraguay, and Uruguay. Wetter-than-usual conditions were also observed for eastern Europe and central Asia, alleviating the drought conditions of 2014 and 2015 in southern Russia. In the United States, California had its first wetter-than-average year since 2012, after being plagued by drought for several years. Even so, the area covered by drought in 2016 at the global scale was among the largest in the post-1950 record. For each month, at least 12% of land surfaces experienced severe drought conditions or worse, the longest such stretch in the record. In northeastern Brazil, drought conditions were observed for the fifth consecutive year, making this the longest drought on record in the region. Dry conditions were also observed in western Bolivia and Peru; it was Bolivia's worst drought in the past 25 years. In May, with abnormally warm and dry conditions already prevailing over western Canada for about a year, the human-induced Fort McMurray wildfire burned nearly 590000 hectares and became the costliest disaster in Canadian history, with $3 billion (U.S. dollars) in insured losses.
  •  
2.
  • Abbott, Jessica K., et al. (author)
  • The microevolutionary response to male-limited X-chromosome evolution in Drosophila melanogaster reflects macroevolutionary patterns
  • 2020
  • In: Journal of Evolutionary Biology. - : Wiley-Blackwell. - 1010-061X .- 1420-9101. ; 33:6, s. 738-750
  • Journal article (peer-reviewed)abstract
    • Due to its hemizygous inheritance and role in sex determination, the X-chromosome is expected to play an important role in the evolution of sexual dimorphism and to be enriched for sexually antagonistic genetic variation. By forcing the X-chromosome to only be expressed in males over >40 generations, we changed the selection pressures on the X to become similar to those experienced by the Y. This releases the X from any constraints arising from selection in females and should lead to specialization for male fitness, which could occur either via direct effects of X-linked loci or trans-regulation of autosomal loci by the X. We found evidence of masculinization via up-regulation of male-benefit sexually antagonistic genes and down-regulation of X-linked female-benefit genes. Potential artefacts of the experimental evolution protocol are discussed and cannot be wholly discounted, leading to several caveats. Interestingly, we could detect evidence of microevolutionary changes consistent with previously documented macroevolutionary patterns, such as changes in expression consistent with previously established patterns of sexual dimorphism, an increase in the expression of metabolic genes related to mito-nuclear conflict and evidence that dosage compensation effects can be rapidly altered. These results confirm the importance of the X in the evolution of sexual dimorphism and as a source for sexually antagonistic genetic variation and demonstrate that experimental evolution can be a fruitful method for testing theories of sex chromosome evolution.
  •  
3.
  • Harper, Jon Alexander, et al. (author)
  • Systematic review reveals multiple sexually antagonistic polymorphisms affecting human disease and complex traits
  • 2021
  • In: Evolution. - : John Wiley & Sons. - 0014-3820 .- 1558-5646. ; 75:12, s. 3087-3097
  • Journal article (peer-reviewed)abstract
    • An evolutionary model for sex differences in disease risk posits that alleles conferring higher risk in one sex may be protective in the other. These sexually antagonistic (SA) alleles are predicted to be maintained at frequencies higher than expected under purifying selection against unconditionally deleterious alleles, but there are apparently no examples in humans. Discipline-specific terminology, rather than a genuine lack of such alleles, could explain this disparity. We undertook a two-stage review of evidence for SA polymorphisms in humans using search terms from (i) evolutionary biology and (ii) biomedicine. Although the first stage returned no eligible studies, the second revealed 51 genes with sex-opposite effects; 22 increased disease risk or severity in one sex but protected the other. Those with net positive effects occurred at higher frequencies. None were referred to as SA. Our review reveals significant communication barriers to fields as a result of discipline-specific terminology.
  •  
4.
  • Lund-Hansen, Katrine K., et al. (author)
  • Feminization of complex traits in Drosophila melanogaster via female-limited X chromosome evolution
  • 2020
  • In: Evolution. - : Wiley. - 0014-3820 .- 1558-5646. ; 74:12, s. 2703-2713
  • Journal article (peer-reviewed)abstract
    • A handful of studies have investigated sexually antagonistic constraints on achieving sex-specific fitness optima, although exclusively through male-genome-limited evolution experiments. In this article, we established a female-limited X chromosome evolution experiment, where we used an X chromosome balancer to enforce the inheritance of the X through the matriline, thus removing exposure to male selective constraints. This approach eliminates the effects of sexually antagonistic selection on the X chromosome, permitting evolution toward a single sex-specific optimum. After multiple generations of selection, we found strong evidence that body size and development time had moved toward a female-specific optimum, whereas reproductive fitness and locomotion activity remained unchanged. The changes in body size and development time are consistent with previous results, and suggest that the X chromosome is enriched for sexually antagonistic genetic variation controlling these particular traits. The lack of change in reproductive fitness and locomotion activity could be due to a number of mutually nonexclusive explanations, including a lack of sexually antagonistic variance on the X chromosome for those traits or confounding effects of the use of the balancer chromosome. This study is the first to employ female-genome-limited selection and adds to the understanding of the complexity of sexually antagonistic genetic variation.
  •  
5.
  • Lund-Hansen, Katrine K., et al. (author)
  • Sexually antagonistic coevolution between the sex chromosomes of Drosophila melanogaster
  • 2021
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : National academy of Science. - 0027-8424 .- 1091-6490. ; 118:8
  • Journal article (peer-reviewed)abstract
    • Antagonistic interactions between the sexes are important drivers of evolutionary divergence. Interlocus sexual conflict is generally described as a conflict between alleles at two interacting loci whose identity and genomic location are arbitrary, but with opposite fitness effects in each sex. We build on previous theory by suggesting that when loci under interlocus sexual conflict are located on the sex chromosomes it can lead to cycles of antagonistic coevolution between them and therefore between the sexes. We tested this hypothesis by performing experimental crosses using Drosophila melanogaster where we reciprocally exchanged the sex chromosomes between five allopatric wild-type populations in a round-robin design. Disrupting putatively coevolved sex chromosome pairs resulted in increased male reproductive success in 16 of 20 experimental populations (10 of which were individually significant), but also resulted in lower offspring egg-to-adult viability that affected both male and female fitness. After 25 generations of experimental evolution these sexually antagonistic fitness effects appeared to be resolved. To formalize our hypothesis, we developed population genetic models of antagonistic coevolution using fitness expressions based on our empirical results. Our model predictions support the conclusion that antagonistic coevolution between the sex chromosomes is plausible under the fitness effects observed in our experiments. Together, our results lend both empirical and theoretical support to the idea that cycles of antagonistic coevolution can occur between sex chromosomes and illustrate how this process, in combination with autosomal coadaptation, may drive genetic and phenotypic divergence between populations.
  •  
6.
  •  
7.
  • Winkler, Lennart, et al. (author)
  • Stronger net selection on males across animals
  • 2021
  • In: eLIFE. - : eLIFE SCIENCES PUBL LTD. - 2050-084X. ; 10
  • Journal article (peer-reviewed)abstract
    • Sexual selection is considered the major driver for the evolution of sex differences. However, the eco-evolutionary dynamics of sexual selection and their role for a population's adaptive potential to respond to environmental change have only recently been explored. Theory predicts that sexual selection promotes adaptation at a low demographic cost only if sexual selection is aligned with natural selection and if net selection is stronger on males compared to females. We used a comparative approach to show that net selection is indeed stronger in males and provide preliminary support that this sex bias is associated with sexual selection. Given that both sexes share the vast majority of their genes, our findings corroborate the notion that the genome is often confronted with a more stressful environment when expressed in males. Collectively, our study supports one of the long-standing key assumptions required for sexual selection to bolster adaptation, and sexual selection may therefore enable some species to track environmental change more efficiently.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view