SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Mowinckel A. M.) "

Search: WFRF:(Mowinckel A. M.)

  • Result 1-10 of 18
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Roe, James M., et al. (author)
  • Asymmetric thinning of the cerebral cortex across the adult lifespan is accelerated in Alzheimer’s disease
  • 2021
  • In: Nature Communications. - : Nature Research. - 2041-1723. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Aging and Alzheimer’s disease (AD) are associated with progressive brain disorganization. Although structural asymmetry is an organizing feature of the cerebral cortex it is unknown whether continuous age- and AD-related cortical degradation alters cortical asymmetry. Here, in multiple longitudinal adult lifespan cohorts we show that higher-order cortical regions exhibiting pronounced asymmetry at age ~20 also show progressive asymmetry-loss across the adult lifespan. Hence, accelerated thinning of the (previously) thicker homotopic hemisphere is a feature of aging. This organizational principle showed high consistency across cohorts in the Lifebrain consortium, and both the topological patterns and temporal dynamics of asymmetry-loss were markedly similar across replicating samples. Asymmetry-change was further accelerated in AD. Results suggest a system-wide dedifferentiation of the adaptive asymmetric organization of heteromodal cortex in aging and AD.
  •  
4.
  •  
5.
  • Fjell, Anders M., et al. (author)
  • Poor Self-Reported Sleep is Related to Regional Cortical Thinning in Aging but not Memory Decline-Results From the Lifebrain Consortium
  • 2021
  • In: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199. ; 31:4, s. 1953-1969
  • Journal article (peer-reviewed)abstract
    • We examined whether sleep quality and quantity are associated with cortical and memory changes in cognitively healthy participants across the adult lifespan. Associations between self-reported sleep parameters (Pittsburgh Sleep Quality Index, PSQI) and longitudinal cortical change were tested using five samples from the Lifebrain consortium (n = 2205, 4363 MRIs, 18-92 years). In additional analyses, we tested coherence with cell-specific gene expression maps from the Allen Human Brain Atlas, and relations to changes in memory performance. "PSQI # 1 Subjective sleep quality" and "PSQI #5 Sleep disturbances" were related to thinning of the right lateral temporal cortex, with lower quality and more disturbances being associated with faster thinning. The association with "PSQI #5 Sleep disturbances" emerged after 60 years, especially in regions with high expression of genes related to oligodendrocytes and S1 pyramidal neurons. None of the sleep scales were related to a longitudinal change in episodic memory function, suggesting that sleep-related cortical changes were independent of cognitive decline. The relationship to cortical brain change suggests that self-reported sleep parameters are relevant in lifespan studies, but small effect sizes indicate that self-reported sleep is not a good biomarker of general cortical degeneration in healthy older adults.
  •  
6.
  • Binnewies, Julia, et al. (author)
  • Associations of depression and regional brain structure across the adult lifespan : Pooled analyses of six population-based and two clinical cohort studies in the European Lifebrain consortium
  • 2022
  • In: NeuroImage. - : Elsevier. - 2213-1582. ; 36
  • Journal article (peer-reviewed)abstract
    • Objective: Major depressive disorder has been associated with lower prefrontal thickness and hippocampal volume, but it is unknown whether this association also holds for depressive symptoms in the general population. We investigated associations of depressive symptoms and depression status with brain structures across population-based and patient-control cohorts, and explored whether these associations are similar over the lifespan and across sexes.Methods: We included 3,447 participants aged 18–89 years from six population-based and two clinical patient-control cohorts of the European Lifebrain consortium. Cross-sectional meta-analyses using individual person data were performed for associations of depressive symptoms and depression status with FreeSurfer-derived thickness of bilateral rostral anterior cingulate cortex (rACC) and medial orbitofrontal cortex (mOFC), and hippocampal and total grey matter volume (GMV), separately for population-based and clinical cohorts.Results: Across patient-control cohorts, depressive symptoms and presence of mild-to-severe depression were associated with lower mOFC thickness (rsymptoms = −0.15/ rstatus = −0.22), rACC thickness (rsymptoms = −0.20/ rstatus = −0.25), hippocampal volume (rsymptoms = −0.13/ rstatus = 0.13) and total GMV (rsymptoms = −0.21/ rstatus = −0.25). Effect sizes were slightly larger for presence of moderate-to-severe depression. Associations were similar across age groups and sex. Across population-based cohorts, no associations between depression and brain structures were observed.Conclusions: Fitting with previous meta-analyses, depressive symptoms and depression status were associated with lower mOFC, rACC thickness, and hippocampal and total grey matter volume in clinical patient-control cohorts, although effect sizes were small. The absence of consistent associations in population-based cohorts with mostly mild depressive symptoms, suggests that significantly lower thickness and volume of the studied brain structures are only detectable in clinical populations with more severe depressive symptoms.
  •  
7.
  •  
8.
  • Vidal-Pineiro, D., et al. (author)
  • Relationship between cerebrospinal fluid neurodegeneration biomarkers and temporal brain atrophy in cognitively healthy older adults
  • 2022
  • In: Neurobiology of Aging. - : Elsevier BV. - 0197-4580 .- 1558-1497. ; 116, s. 80-91
  • Journal article (peer-reviewed)abstract
    • It is unclear whether cerebrospinal fluid (CSF) biomarkers of neurodegeneration predict brain atrophy in cognitively healthy older adults, whether these associations can be explained by phosphorylated tau181 (p-tau) and the 42 amino acid form of amyloid-beta (A beta 42) biomarkers, and which neural substrates may drive these associations. We addressed these questions in 2 samples of cognitively healthy older adults who underwent longitudinal structural MRI up to 7 years and had baseline CSF levels of heart-type fatty-acid binding protein (FABP3) = , total-tau, neurogranin, and neurofilament light (NFL) (n = 189, scans = 721). The results showed that NFL, total-tau, and FABP3 predicted entorhinal thinning and hippocampal atrophy. Brain atrophy was not moderated by A beta 42 and the associations between NFL and FABP3 with brain atrophy were independent of p-tau. The spatial pattern of cortical atrophy associated with the biomarkers overlapped with neurogenetic profiles associated with expression in the axonal (total-tau, NFL) and dendritic (neurogranin) components. CSF biomarkers of neurodegeneration are useful for predicting specific features of brain atrophy in older adults, independently of amyloid and tau pathology biomarkers. (C) 2022 The Author(s). Published by Elsevier Inc.
  •  
9.
  • Walhovd, Kristine B., et al. (author)
  • Education and Income Show Heterogeneous Relationships to Lifespan Brain and Cognitive Differences Across European and US Cohorts
  • 2022
  • In: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199. ; 32:4, s. 839-854
  • Journal article (peer-reviewed)abstract
    • Higher socio-economic status (SES) has been proposed to have facilitating and protective effects on brain and cognition. We ask whether relationships between SES, brain volumes and cognitive ability differ across cohorts, by age and national origin. European and US cohorts covering the lifespan were studied (4-97 years, N = 500 000; 54 000 w/brain imaging). There was substantial heterogeneity across cohorts for all associations. Education was positively related to intracranial (ICV) and total gray matter (GM) volume. Income was related to ICV, but not GM. We did not observe reliable differences in associations as a function of age. SES was more strongly related to brain and cognition in US than European cohorts. Sample representativity varies, and this study cannot identify mechanisms underlying differences in associations across cohorts. Differences in neuroanatomical volumes partially explained SES-cognition relationships. SES was more strongly related to ICV than to GM, implying that SES-cognition relations in adulthood are less likely grounded in neuroprotective effects on GM volume in aging. The relatively stronger SES-ICV associations rather are compatible with SES-brain volume relationships being established early in life, as ICV stabilizes in childhood. The findings underscore that SES has no uniform association with, or impact on, brain and cognition.
  •  
10.
  • Fjell, Anders M., et al. (author)
  • No phenotypic or genotypic evidence for a link between sleep duration and brain atrophy
  • 2023
  • In: Nature Human Behaviour. - : Springer Nature. - 2397-3374. ; 7:11, s. 2008-2022
  • Journal article (peer-reviewed)abstract
    • Short sleep is held to cause poorer brain health, but is short sleep associated with higher rates of brain structural decline? Analysing 8,153 longitudinal MRIs from 3,893 healthy adults, we found no evidence for an association between sleep duration and brain atrophy. In contrast, cross-sectional analyses (51,295 observations) showed inverse U-shaped relationships, where a duration of 6.5 (95% confidence interval, (5.7, 7.3)) hours was associated with the thickest cortex and largest volumes relative to intracranial volume. This fits converging evidence from research on mortality, health and cognition that points to roughly seven hours being associated with good health. Genome-wide association analyses suggested that genes associated with longer sleep for below-average sleepers were linked to shorter sleep for above-average sleepers. Mendelian randomization did not yield evidence for causal impacts of sleep on brain structure. The combined results challenge the notion that habitual short sleep causes brain atrophy, suggesting that normal brains promote adequate sleep duration—which is shorter than current recommendations.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view