SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Mukherjee Angana) "

Search: WFRF:(Mukherjee Angana)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Boccaletto, Pietro, et al. (author)
  • MODOMICS: a database of RNA modification pathways. 2021 update
  • 2022
  • In: Nucleic Acids Research. - : Oxford University Press. - 0305-1048 .- 1362-4962. ; 50:D1, s. D231-D235
  • Journal article (peer-reviewed)abstract
    • The MODOMICS database has been, since 2006, a manually curated and centralized resource, storing and distributing comprehensive information about modified ribonucleosides. Originally, it only contained data on the chemical structures of modified ribonucleosides, their biosynthetic pathways, the location of modified residues in RNA sequences, and RNA-modifying enzymes. Over the years, prompted by the accumulation of new knowledge and new types of data, it has been updated with new information and functionalities. In this new release, we have created a catalog of RNA modifications linked to human diseases, e.g., due to mutations in genes encoding modification enzymes. MODOMICS has been linked extensively to RCSB Protein Data Bank, and sequences of experimentally determined RNA structures with modified residues have been added. This expansion was accompanied by including nucleotide 5'-monophosphate residues. We redesigned the web interface and upgraded the database backend. In addition, a search engine for chemically similar modified residues has been included that can be queried by SMILES codes or by drawing chemical molecules. Finally, previously available datasets of modified residues, biosynthetic pathways, and RNA-modifying enzymes have been updated. Overall, we provide users with a new, enhanced, and restyled tool for research on RNA modification. MODOMICS is available at https://iimcb.genesilico.pl/modomics/.
  •  
2.
  • Singh, Sushma, et al. (author)
  • Antileishmanial effect of 3-aminooxy-1-aminopropane is due to polyamine depletion.
  • 2007
  • In: Antimicrob Agents Chemother. - 0066-4804. ; 51, s. 528-534
  • Journal article (peer-reviewed)abstract
    • The polyamines putrescine, spermidine, and spermine are organic cations that are required for cell growth and differentiation. Ornithine decarboxylase (ODC), the first and rate-limiting enzyme in the polyamine biosynthetic pathway, catalyzes the conversion of ornithine to putrescine. As the polyamine biosynthetic pathway is essential for the growth and survival of Leishmania donovani, the causative agent of visceral leishmaniasis, inhibition of the pathway is an important leishmaniacidal strategy. In the present study, we examined for the first time the effects of 3-aminooxy-1-aminopropane (APA), an ODC inhibitor, on the growth of L. donovani. APA inhibited the growth of both promastigotes in vitro and amastigotes in the macrophage model, with the 50% inhibitory concentrations being 42 and 5 microM, respectively. However, concentrations of APA up to 200 microM did not affect the viability of macrophages. The effects of APA were completely abolished by the addition of putrescine or spermidine. APA induced a significant decrease in ODC activity and putrescine, spermidine, and trypanothione levels in L. donovani promastigotes. Parasites were transfected with an episomal ODC construct, and these ODC overexpressers exhibited significant resistance to APA and were concomitantly resistant to sodium antimony gluconate (Pentostam), indicating a role for ODC overexpression in antimonial drug resistance. Clinical isolates with sodium antimony gluconate resistance were also found to overexpress ODC and to have significant increases in putrescine and spermidine levels. However, no increase in trypanothione levels was observed. The ODC overexpression in these clinical isolates alleviated the antiproliferative effects of APA. Collectively, our results demonstrate that APA is a potent inhibitor of L. donovani growth and that its leishmaniacidal effect is due to inhibition of ODC.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view