SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Nagy Bence) "

Search: WFRF:(Nagy Bence)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Maróti, Zoltán, et al. (author)
  • The genetic origin of Huns, Avars, and conquering Hungarians
  • 2022
  • In: Current Biology. - : Elsevier BV. - 0960-9822 .- 1879-0445. ; 32:13, s. 2858-2870, 2858–2870.e1–e7
  • Journal article (peer-reviewed)abstract
    • Huns, Avars, and conquering Hungarians were migration-period nomadic tribal confederations that arrived in three successive waves in the Carpathian Basin between the 5th and 9th centuries. Based on the historical data, each of these groups are thought to have arrived from Asia, although their exact origin and relation to other ancient and modern populations have been debated. Recently, hundreds of ancient genomes were analyzed from Central Asia, Mongolia, and China, from which we aimed to identify putative source populations for the above-mentioned groups. In this study, we have sequenced 9 Hun, 143 Avar, and 113 Hungarian conquest period samples and identified three core populations, representing immigrants from each period with no recent European ancestry. Our results reveal that this “immigrant core” of both Huns and Avars likely originated in present day Mongolia, and their origin can be traced back to Xiongnus (Asian Huns), as suggested by several historians. On the other hand, the “immigrant core” of the conquering Hungarians derived from an earlier admixture of Mansis, early Sarmatians, and descendants of late Xiongnus. We have also shown that a common “proto-Ugric” gene pool appeared in the Bronze Age from the admixture of Mezhovskaya and Nganasan people, supporting genetic and linguistic data. In addition, we detected shared Hun-related ancestry in numerous Avar and Hungarian conquest period genetic outliers, indicating a genetic link between these successive nomadic groups. Aside from the immigrant core groups, we identified that the majority of the individuals from each period were local residents harboring “native European” ancestry.
  •  
2.
  • Gergely, Andras, et al. (author)
  • Hydrogen Sulfide Corrosion of Carbon and Stainless Steel Alloys in Mixtures of Renewable Fuel Sources under Co-Processing Conditions
  • 2018
  • In: Modern Applied Science. - : Canadian Center of Science and Education. - 1913-1844 .- 1913-1852. ; 12:4, s. 227-255
  • Journal article (peer-reviewed)abstract
    • Corrosion rates of steel alloys were investigated in gas oil and its mixture with waste cooking oil and animal waste lard over 1, 3, 7 and 21 days under desulfurizing condition. Co-processing conditions were attempted to simulate by batch-reactor experiment at temperatures between 200 and 300oC and pressures between 20 and 90 bar in the presence of 2 volume% hydrogen sulfide. Integral and differential corrosion rates were defined by weight losses. Intense sulfide corrosion of carbon steels was less impacted by the biomass sources. Thinner scales in gas oil was probably due to frequent cohesive failure, whereas thicker layers in biomass mixtures were allowed to form to afford limited physical protection. The high corrosion rate of low alloy steel with temperature over time is related to inefficient protection by the metal sulfide scales. Greater activation energy and enthalpy balance in the formation of activated complex is expected to reflect in thick cohesive scales. Loose layers and the less unfavorable entropy balance in the transition state did not lead to valuable barrier protection. High sulfide corrosion resistance of stainless steels is in chemical in nature markedly impacted by the biomass fuel sources and contributed especially by the acidic species. Corrosion rates increased with temperature by magnitude similar to those of carbon steels, which probably owes to the less unfavorable entropy and free energy balance between the initial and transition states of the reactants.
  •  
3.
  • Nasi, Aikaterini, et al. (author)
  • Dendritic cell response to HIV-1 is controlled by differentiation programs in the cells and strain-specific properties of the virus
  • 2017
  • In: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 8:MAR
  • Journal article (peer-reviewed)abstract
    • Dendritic cells (DCs) are potent antigen-presenting cells that might play contradictory roles during HIV-1 infection, contributing not only to antiviral immunity but also to viral dissemination and immune evasion. Although DCs are characterized by enormous functional diversity, it has not been analyzed how differentially programmed DCs interact with HIV-1. We have previously described the reprogramming of DC development by endogenously produced lactic acid that accumulated in a cell culture density-dependent manner and provided a long-lasting anti-inflammatory signal to the cells. By exploiting this mechanism, we generated immunostimulatory DCs characterized by the production of TH1 polarizing and inflammatory mediators or, alternatively, suppressed DCs that produce IL-10 upon activation, and we tested the interaction of these DC types with different HIV-1 strains. Cytokine patterns were monitored in HIV-1-exposed DC cultures. Our results showed that DCs receiving suppressive developmental program strongly upregulated their capacity to produce the TH1 polarizing cytokine IL-12 and the inflammatory chemokines CCL2 and CCL7 upon interaction with HIV-1 strains IIIB and SF162. On the contrary, HIV-1 abolished cytokine production in the more inflammatory DC types. Preincubation of the cells with the HIV-1 proteins gp120 and Nef could inhibit IL-12 production irrespectively of the tested DC types, whereas MyD88- and TRIF-dependent signals stimulated IL-12 production in the suppressed DC type only. Rewiring of DC cytokines did not require DC infections or ligation of the HIV-1 receptor CD209. A third HIV-1 strain, BaL, could not modulate DC cytokines in a similar manner indicating that individual HIV-1 strains can differ in their capacity to influence DCs. Our results demonstrated that HIV-1 could not induce definite and invariable modulatory programs in DCs. Instead, interaction with the virus triggered different responses in different DC types. Thus, the outcome of DC-HIV-1 interactions might be highly variable, shaped by endogenous features of the cells and diversity of the virus.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view