SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Niu Ziyu) "

Search: WFRF:(Niu Ziyu)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Beal, Jacob, et al. (author)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • In: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • Niu, Ziyu, et al. (author)
  • Enhanced electrochemical performance of three-dimensional graphene/carbon nanotube composite for supercapacitor application
  • 2020
  • In: Journal of Alloys and Compounds. - : Elsevier BV. - 0925-8388. ; 820
  • Journal article (peer-reviewed)abstract
    • In this work, we developed a facile route to synthesize three-dimensional graphene/carbon nanotube (3DG/CNT) hybrids as electrodes for binder-free electrical double layer capacitor (EDLC) by using chemical vapor deposition (CVD) method. The 3DG/CNT composites have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). It was found that the 3DG/CNT with interconnected architecture exhibit improved capacitive characteristic and electrical conductivity compared to that of pure 3DG. The 3DG/CNT composites have high specific capacitance of 197.2 F/g and excellent capacity retention rate of 93% after 1000 cycles. The experiment results show that the as-synthesized 3DG/CNT hold great potential as candidate as electrode for binder-free EDLC. © 2019 Elsevier B.V.
  •  
3.
  • Zhang, Yong, 1982, et al. (author)
  • Improved Thermal Properties of Three-Dimensional Graphene Network Filled Polymer Composites
  • 2022
  • In: Journal of Electronic Materials. - : Springer Science and Business Media LLC. - 1543-186X .- 0361-5235. ; 51:1, s. 420-425
  • Journal article (peer-reviewed)abstract
    • This paper presents the improved thermal property of three-dimensional (3D) graphene network modified polydimethylsiloxane (PDMS) composites. It shows that with a 2 wt.% loading of graphene foams (GF), the thermal conductivity of GF/PDMS composite was successfully increased from 0.19 W/mK to 0.42 W/mK, which is 2.2 times higher than that of neat PDMS. However, if GF was transformed into graphene sheets (GS) by sonication, the thermal conductivity of GS/PDMS was decreased to 0.28 W/mK. The remarkable improvement of the thermal properties is attributed to the 3D interconnected graphene network in GF, which form continuous heat transfer networks. Furthermore, the finite element analysis was conducted to evaluate the effect of GFs in composites, where some parameters such as thickness and thermal conductivity were analyzed and discussed. Our results indicate that the continuous 3D GFs holds great potential as fillers to improve the thermal property of polymer materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view