SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Norrbom J) "

Search: WFRF:(Norrbom J)

  • Result 1-10 of 41
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Figueiredo, Vandre C., et al. (author)
  • Genetic and epigenetic regulation of skeletal muscle ribosome biogenesis with exercise
  • 2021
  • In: Journal of Physiology. - : Wiley-Blackwell. - 0022-3751 .- 1469-7793. ; 599:13, s. 3363-3384
  • Journal article (peer-reviewed)abstract
    • Key points Ribosome biogenesis and MYC transcription are associated with acute resistance exercise (RE) and are distinct from endurance exercise in human skeletal muscle throughout a 24 h time course of recovery. A PCR-based method for relative ribosomal DNA (rDNA) copy number estimation was validated by whole genome sequencing and revealed that rDNA dosage is positively correlated with ribosome biogenesis in response to RE. Acute RE modifies rDNA methylation patterns in enhancer, intergenic spacer and non-canonical MYC-associated regions, but not the promoter. Myonuclear-specific rDNA methylation patterns with acute mechanical overload in mice corroborate and expand on rDNA findings with RE in humans. A genetic predisposition for hypertrophic responsiveness may exist based on rDNA gene dosage. Ribosomes are the macromolecular engines of protein synthesis. Skeletal muscle ribosome biogenesis is stimulated by exercise, although the contribution of ribosomal DNA (rDNA) copy number and methylation to exercise-induced rDNA transcription is unclear. To investigate the genetic and epigenetic regulation of ribosome biogenesis with exercise, a time course of skeletal muscle biopsies was obtained from 30 participants (18 men and 12 women; 31 +/- 8 years, 25 +/- 4 kg m(-2)) at rest and 30 min, 3 h, 8 h and 24 h after acute endurance (n = 10, 45 min cycling, 70% V?O2max) or resistance exercise (n = 10, 4 x 7 x 2 exercises); 10 control participants underwent biopsies without exercise. rDNA transcription and dosage were assessed using quantitative PCR and whole genome sequencing. rDNA promoter methylation was investigated using massARRAY EpiTYPER and global rDNA CpG methylation was assessed using reduced-representation bisulphite sequencing. Ribosome biogenesis and MYC transcription were associated primarily with resistance but not endurance exercise, indicating preferential up-regulation during hypertrophic processes. With resistance exercise, ribosome biogenesis was associated with rDNA gene dosage, as well as epigenetic changes in enhancer and non-canonical MYC-associated areas in rDNA, but not the promoter. A mouse model of in vivo metabolic RNA labelling and genetic myonuclear fluorescence labelling validated the effects of an acute hypertrophic stimulus on ribosome biogenesis and Myc transcription, and also corroborated rDNA enhancer and Myc-associated methylation alterations specifically in myonuclei. The present study provides the first information on skeletal muscle genetic and rDNA gene-wide epigenetic regulation of ribosome biogenesis in response to exercise, revealing novel roles for rDNA dosage and CpG methylation.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Wengström, Y., et al. (author)
  • Optitrain : a randomised controlled exercise trial for women with breast cancer undergoing chemotherapy
  • 2017
  • In: BMC Cancer. - : BioMed Central. - 1471-2407. ; 17
  • Journal article (peer-reviewed)abstract
    • Background: Women with breast cancer undergoing chemotherapy suffer from a range of detrimental disease and treatment related side-effects. Exercise has shown to be able to counter some of these side-effects and improve physical function as well as quality of life. The primary aim of the study is to investigate and compare the effects of two different exercise regimens on the primary outcome cancer-related fatigue and the secondary outcomes muscle strength, function and structure, cardiovascular fitness, systemic inflammation, skeletal muscle gene activity, health related quality of life, pain, disease and treatment-related symptoms in women with breast cancer receiving chemotherapy. The second aim is to examine if any effects are sustained 1, 2, and 5 years following the completion of the intervention and to monitor return to work, recurrence and survival. The third aim of the study is to examine the effect of attendance and adherence rates on the effects of the exercise programme.Methods: This study is a randomised controlled trial including 240 women with breast cancer receiving chemotherapy in Stockholm, Sweden. The participants are randomly allocated to either: group 1: Aerobic training, group 2: Combined resistance and aerobic training, or group 3: usual care (control group). During the 5-year follow-up period, participants in the exercise groups will receive a physical activity prescription. Measurements for endpoints will take place at baseline, after 16 weeks (end of intervention) as well as after 1, 2 and 5 years.Discussion: This randomised controlled trial will generate substantial information regarding the effects of different types of exercise on the health of patients with breast cancer undergoing chemotherapy. We expect that dissemination of the knowledge gained from this study will contribute to developing effective long term strategies to improve the physical and psychosocial health of breast cancer survivors.
  •  
7.
  • Amar, D, et al. (author)
  • Time trajectories in the transcriptomic response to exercise - a meta-analysis
  • 2021
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1, s. 3471-
  • Journal article (peer-reviewed)abstract
    • Exercise training prevents multiple diseases, yet the molecular mechanisms that drive exercise adaptation are incompletely understood. To address this, we create a computational framework comprising data from skeletal muscle or blood from 43 studies, including 739 individuals before and after exercise or training. Using linear mixed effects meta-regression, we detect specific time patterns and regulatory modulators of the exercise response. Acute and long-term responses are transcriptionally distinct and we identify SMAD3 as a central regulator of the exercise response. Exercise induces a more pronounced inflammatory response in skeletal muscle of older individuals and our models reveal multiple sex-associated responses. We validate seven of our top genes in a separate human cohort. In this work, we provide a powerful resource (www.extrameta.org) that expands the transcriptional landscape of exercise adaptation by extending previously known responses and their regulatory networks, and identifying novel modality-, time-, age-, and sex-associated changes.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 41

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view