SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(O’Regan Matthew) "

Search: WFRF:(O’Regan Matthew)

  • Result 1-10 of 38
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Stranne, Christian, et al. (author)
  • Can anaerobic oxidation of methane prevent seafloor gas escape in a warming climate?
  • 2019
  • In: Solid Earth. - : Copernicus GmbH. - 1869-9510 .- 1869-9529. ; 10:5, s. 1541-1554
  • Journal article (peer-reviewed)abstract
    • Assessments of future climate-warming-induced seafloor methane (CH4) release rarely include anaerobic ox- idation of methane (AOM) within the sediments. Consider- ing that more than 90 % of the CH4 produced in ocean sed- iments today is consumed by AOM, this may result in sub- stantial overestimations of future seafloor CH4 release. Here, we integrate a fully coupled AOM module with a numerical hydrate model to investigate under what conditions rapid re- lease of CH4 can bypass AOM and result in significant fluxes to the ocean and atmosphere. We run a number of different model simulations for different permeabilities and maximum AOM rates. In all simulations, a future climate warming sce- nario is simulated by imposing a linear seafloor temperature increase of 3 ◦C over the first 100 years. The results presented in this study should be seen as a first step towards under- standing AOM dynamics in relation to climate change and hydrate dissociation. Although the model is somewhat poorly constrained, our results indicate that vertical CH4 migration through hydraulic fractures can result in low AOM efficien- cies. Fracture flow is the predicted mode of methane trans- port under warming-induced dissociation of hydrates on up- per continental slopes. Therefore, in a future climate warm- ing scenario, AOM might not significantly reduce methane release from marine sediments. 
  •  
3.
  • Alexanderson, Helena, et al. (author)
  • An Arctic perspective on dating Mid-Late Pleistocene environmental history
  • 2014
  • In: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 92, s. 9-31
  • Research review (peer-reviewed)abstract
    • To better understand Pleistocene climatic changes in the Arctic, integrated palaeoenvironmental andpalaeoclimatic signals from a variety of marine and terrestrial geological records as well as geochronologicage control are required, not least for correlation to extra-Arctic records. In this paper we discuss,from an Arctic perspective, methods and correlation tools that are commonly used to date ArcticPleistocene marine and terrestrial events. We review the state of the art of Arctic geochronology, withfocus on factors that affect the possibility and quality of dating, and support this overview by examples ofapplication of modern dating methods to Arctic terrestrial and marine sequences.Event stratigraphy and numerical ages are important tools used in the Arctic to correlate fragmentedterrestrial records and to establish regional stratigraphic schemes. Age control is commonly provided byradiocarbon, luminescence or cosmogenic exposure ages. Arctic Ocean deep-sea sediment successionscan be correlated over large distances based on geochemical and physical property proxies for sedimentcomposition, patterns in palaeomagnetic records and, increasingly, biostratigraphic data. Many of theseproxies reveal cyclical patterns that provide a basis for astronomical tuning.Recent advances in dating technology, calibration and age modelling allow for measuring smallerquantities of material and to more precisely date previously undatable material (i.e. foraminifera for 14C,and single-grain luminescence). However, for much of the Pleistocene there are still limits to the resolutionof most dating methods. Consequently improving the accuracy and precision (analytical andgeological uncertainty) of dating methods through technological advances and better understanding ofprocesses are important tasks for the future. Another challenge is to better integrate marine andterrestrial records, which could be aided by targeting continental shelf and lake records, exploringproxies that occur in both settings, and by creating joint research networks that promote collaborationbetween marine and terrestrial geologists and modellers.
  •  
4.
  • Birch, Heather, et al. (author)
  • Planktonic foraminifera stable isotopes and water column structure : Disentangling ecological signals
  • 2013
  • In: Marine Micropaleontology. - : Elsevier BV. - 0377-8398 .- 1872-6186. ; 101, s. 127-145
  • Journal article (peer-reviewed)abstract
    • Differential carbon and oxygen stable isotope (delta C-13 and delta O-18) fractionation between planktonic foraminifera test calcite and sea water related to ecology and life stage confound the potential for reconstructing palaeo-water column temperature and carbon gradients. Multi-species analysis and strict selection of test sizes are useful methods for identifying these fractionation processes, also known as 'vital effects', in fossil taxa. However, there are a limited number of species with adequate size-controlled data sets, needed for ground truthing the approach in the modern. Here we report delta C-13 and delta O-18 measurements made on twelve species of modern planktonic foraminifera across a range of fourteen tightly constrained size windows from a tropical Indian Ocean core top sample. This data set includes more test size windows per species, especially from the smallest (identifiable) test size-classes, and a wider range of species than previously attempted. We use the size controlled delta O-18 calcite trajectories to infer depth habitats and calculate species-specific calcification temperatures. The temperatures are then used to constrain species-specific calcification depths along the modern vertical temperature profile in the western tropical Indian Ocean. By overlaying the per species delta C-13 calcite trajectories on local water column delta C-13(DIC) profiles, we estimate if and when (i.e. at which test sizes) the planktonic foraminifera species investigated approach ambient delta C-13(DIC) values. The profiling shows significant size-controlled delta C-13 deviation from seawater values in all species at some life/growth stage, which we attribute to (i) metabolic fractionation in tests <150-300 mu m (juveniles of all species and small adults), and; (ii) photosymbiont fractionation, affecting large tests (>similar to 300 mu m) of mixed layer photosymbiotic taxa. For most species there is a size-window where these effects appear to be at a minimum, and/or in balance. Exceptions are Globigerinita glutinata, a small (<200 mu m) surface living species, Globigerina bulloides, which is highly opportunistic, and deep living Globorotalia tumida and Globorotaloides hexagonus, the latter two species being affected by various unexplained delta C-13 vital effects. Use of our refined guidelines for test-size selection should improve the potential for making realistic reconstructions of water column delta C-13(DIC) in a modern tropical stratified setting and potentially in the distant geological past when there are no living analogues present.
  •  
5.
  • Coxall, Helen K., et al. (author)
  • Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation
  • 2018
  • In: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 11:3, s. 190-196
  • Journal article (peer-reviewed)abstract
    • The onset of the North Atlantic Deep Water formation is thought to have coincided with Antarctic ice-sheet growth about 34 million years ago (Ma). However, this timing is debated, in part due to questions over the geochemical signature of the ancient Northern Component Water (NCW) formed in the deep North Atlantic. Here we present detailed geochemical records from North Atlantic sediment cores located close to sites of deep-water formation. We find that prior to 36 Ma, the northwestern Atlantic was stratified, with nutrient-rich, low-salinity bottom waters. This restricted basin transitioned into a conduit for NCW that began flowing southwards approximately one million years before the initial Antarctic glaciation. The probable trigger was tectonic adjustments in subarctic seas that enabled an increased exchange across the Greenland-Scotland Ridge. The increasing surface salinity and density strengthened the production of NCW. The late Eocene deep-water mass differed in its carbon isotopic signature from modern values as a result of the leakage of fossil carbon from the Arctic Ocean. Export of this nutrient-laden water provided a transient pulse of CO2 to the Earth system, which perhaps caused short-term warming, whereas the long-term effect of enhanced NCW formation was a greater northward heat transport that cooled Antarctica.
  •  
6.
  • Cronin, T. M., et al. (author)
  • Holocene paleoceanography and glacial history of Lincoln Sea, Ryder Glacier, Northern Greenland, based on foraminifera and ostracodes
  • 2022
  • In: Marine Micropaleontology. - : Elsevier BV. - 0377-8398 .- 1872-6186. ; 175
  • Journal article (peer-reviewed)abstract
    • We reconstructed Holocene paleoceanography of the Sherard Osborn Fjord (SOF), N Greenland, and Lincoln Sea in the eastern Arctic Ocean using sediment properties and micropaleontology from cores obtained during the Ryder 2019 Expedition. Our aims were to better understand faunal indicators of water mass influence on Ryder Glacier and the Lincoln Sea at water depths >500 m. Benthic microfaunal reflect glacio-marine interval during late deglaciation ~10.5 to 8.5 ka (kiloannum) during the Holocene Thermal Maximum (HTM) with dominant benthic foraminiferal species Cassidulina neoteretis, Cassidulina reniforme, and the ostracode Rabilimis mirabilis. Casssidulina neoteretis is considered an indicator of Atlantic Water (AW) throughout the Arctic Ocean and Nordic Seas; C. reniforme reflects glacio-marine conditions from the retreating Ryder Glacier. Deglaciation was followed by a period of elevated productivity and diverse ostracode faunal assemblages that suggest AW influence from 8.5 to 6 ka in the Lincoln Sea and inside SOF. The Holocene occurrence of the ostracode species Acetabulastoma arcticum, that appears in low numbers in the Lincoln Sea and briefly (~ 4–3 ka) in SOF, reflects the presence of variable sea ice in this region. Based on the similarities of the Lincoln Sea and fjord ostracodes to modern and glacial-deglacial faunas from the central Arctic Ocean, the AW influence likely originates from recirculation of AW water from the central Arctic Basin. In general, our results suggest a strong but temporally varying influence of AW during the entire 10.5 kyr record of the Lincoln Sea and SOF.
  •  
7.
  •  
8.
  • Farmer, Jesse R., et al. (author)
  • A 600 kyr reconstruction of deep Arctic seawater δ18O from benthic foraminiferal δ18O and ostracode Mg / Ca paleothermometry
  • 2023
  • In: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 19:3, s. 555-578
  • Journal article (peer-reviewed)abstract
    • The oxygen isotopic composition of benthic foraminiferal tests (δ18Ob) is one of the pre-eminent tools for correlating marine sediments and interpreting past terrestrial ice volume and deep-ocean temperatures. Despite the prevalence of δ18Ob applications to marine sediment cores over the Quaternary, its use is limited in the Arctic Ocean because of low benthic foraminiferal abundances, challenges with constructing independent sediment core age models, and an apparent muted amplitude of Arctic δ18Ob variability compared to open-ocean records. Here we evaluate the controls on Arctic δ18Ob by using ostracode  paleothermometry to generate a composite record of the δ18O of seawater (δ18Osw) from 12 sediment cores in the intermediate to deep Arctic Ocean (700–2700 m) that covers the last 600 kyr based on biostratigraphy and orbitally tuned age models. Results show that Arctic δ18Ob was generally higher than open-ocean δ18Ob during interglacials but was generally equivalent to global reference records during glacial periods. The reduced glacial–interglacial Arctic δ18Ob range resulted in part from the opposing effect of temperature, with intermediate to deep Arctic warming during glacials counteracting the whole-ocean δ18Osw increase from expanded terrestrial ice sheets. After removing the temperature effect from δ18Ob, we find that the intermediate to deep Arctic experienced large (≥1 ‰) variations in local δ18Osw, with generally higher local δ18Osw during interglacials and lower δ18Osw during glacials. Both the magnitude and timing of low local δ18Osw intervals are inconsistent with the recent proposal of freshwater intervals in the Arctic Ocean during past glaciations. Instead, we suggest that lower local δ18Osw in the intermediate to deep Arctic Ocean during glaciations reflected weaker upper-ocean stratification and more efficient transport of low-δ18Osw Arctic surface waters to depth by mixing and/or brine rejection.
  •  
9.
  • Flink, Anne E., et al. (author)
  • Past ice flow in Wahlenbergfjorden and its implications for late Quaternary ice sheet dynamics in northeastern Svalbard
  • 2017
  • In: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 163, s. 162-179
  • Journal article (peer-reviewed)abstract
    • Wahlenbergfjorden is a fjord situated in the western part of Nordaustlandet in northern Svalbard. It leads into the 400 m deep Hinlopen Strait located between Nordaustlandet and Spitsbergen. High-resolution multibeam bathymetric and sub-bottom data, as well as sediment cores are used to study the past extent and dynamics of glaciers in Wahlenbergfjorden and western Nordaustlandet. The submarine landform assemblage in Wahlenbergfjorden consists of landforms characteristic of subglacial, ice marginal and proglacial conditions. Glacial lineations indicate that Wahlenbergfjorden was occupied by streaming ice during the LGM and most likely acted as an ice stream onset zone. Westward ice flow in the fjord merged with the ice stream in Hinlopen Strait. Absence of ice recessional landforms in outer Wahlenbergfjorden suggests relatively fast deglaciation, possibly by flotation of the glacier front in the deeper parts of the fjord. The inner part of Wahlenbergfjorden and Palanderbukta are characterized by De Geer moraines, indicating episodic retreat of a grounded glacier front. In Palanderbukta, longer still stands of the glacier terminus resulted in the formation of larger terminal moraine ridges. The inner part of Wahlenbergfjorden was deglaciated prior to 11.3 +/- 55 Cal. ka BP. The submarine landform assemblages in front of Bodleybreen, Etonbreen, Idunbreen, Frazerbreen and Aldousbreen confirm that these glaciers have surged at least once during the Holocene.
  •  
10.
  • Fransner, O., et al. (author)
  • Glacial landforms and their implications for glacier dynamics in Rijpfjorden and Duvefjorden, northern Nordaustlandet, Svalbard
  • 2017
  • In: Journal of Quaternary Science. - : Wiley. - 0267-8179 .- 1099-1417. ; 32:3, s. 437-455
  • Journal article (peer-reviewed)abstract
    • Observations of subglacial landforms yielding the configuration and dynamics of former ice-flows have for the first time been made in Rijpfjorden and Duvefjorden, Nordaustlandet, Svalbard, using sub-bottom acoustic, swath-bathymetric data and sediment cores. Five acoustic-stratigraphic units were distinguished suggesting the presence of a complete glacial-postglacial succession in the central fjord basins. C-14 ages from the sediments indicate that the inner Rijpfjorden and central Duvefjorden were deglaciated before ca. 10.6 cal ka BP and 11.0 cal ka BP, respectively. Maximum sediment thickness in Rijpfjorden and Duvefjorden is 26 m, resulting in sediment accumulation rates of ca. 66 cm ka(-1). The landform record suggests that the ice streaming in both fjords was topographically controlled. The considerably deeper basin and higher elongation ratios of the crag-and-tails in Duvefjorden are linked to the faulted bedrock and possibly to somewhat larger ice stream and/or more focused ice-flow compared to that in Rijpfjorden. De Geer moraines suggest slower retreat of a grounded ice margin from shallow areas of Rijpfjorden. In deeper areas of the fjords, the glaciers were probably floating, resulting in the lack of ice-marginal transverse landforms. The ice margin retreat from these areas was probably relatively rapid and dominated by calving.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 38

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view