SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Olsen HL) "

Search: WFRF:(Olsen HL)

  • Result 1-10 of 25
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Gromada, J, et al. (author)
  • Nateglinide, but not repaglinide, stimulates growth hormone release in rat pituitary cells by inhibition of K+ channels and stimulation of cyclic AMP-dependent exocytosis
  • 2002
  • In: European Journal of Endocrinology. - : Oxford University Press (OUP). - 1479-683X .- 0804-4643. ; 147:1, s. 133-142
  • Journal article (peer-reviewed)abstract
    • Objective: GH causes insulin resistance, impairs glycemic control and increases the risk of vascular diabetic complications. Sulphonylureas stimulate GH secretion and this study was undertaken to investigate the possible stimulatory effect of repaglinide and nateglinide, two novel oral glucose regulators, on critical steps of the stimulus-secretion coupling in single rat somatotrophs. Methods: Patch-clamp techniques were used to record whole-cell ATP-sensitive K+ (K-ATP) and delayed outward K+ currents, membrane potential and Ca2+-dependent exocytosis. GH release was measured from perifused rat somatotrophs. Results: Both nateglinide and repaglinide dose-dependently suppressed K-ATP channel activity with half-maximal inhibition being observed at 413 nM and 13 nM respectively. Both compounds induced action potential firing in the somatotrophs irrespective of whether GH-releasing hormone was present or not. The stimulation of electrical activity by nateglinide, but not repaglinide, was associated with an increased mean duration of the action potentials. The latter effect correlated with a reduction of the delayed outward K+ current, which accounts for action potential repolarization. The latter effect had a K-d of 19 muM but was limited to 38% inhibition. When applied at concentrations similar to those required to block K-ATP channels, nateglinide in addition potentiated Ca2+-evoked exocytosis 3.3-fold (K-d = 3 muM) and stimulated GH release 4.5-fold. The latter effect was not shared by repaglinide. The stimulation of exocytosis by nateglinide was mimicked by cAMP and antagonized by the protein kinase A inhibitor Rp-cAMPS. Conclusion: Nateglinide stimulates GH release by inhibition of plasma membrane K+ channels, elevation of cytoplasmic cAMP levels and stimulation of Ca2+-dependent exocytosis. By contrast, the effect of repaglinide was confined to inhibition of the K-ATP channels.
  •  
7.
  • Hoy, M, et al. (author)
  • Imidazoline NNC77-0074 stimulates insulin secretion and inhibits glucagon release by control of Ca2+-dependent exocytosis in pancreatic alpha- and beta-cells
  • 2003
  • In: European Journal of Pharmacology. - 1879-0712. ; 466:1-2, s. 213-221
  • Journal article (peer-reviewed)abstract
    • We have investigated the effects of the novel imidazoline compound (+)-2-(2-(4,5-dihydro-1H-imidazol-2-yl)-thiopene-2-yl-ethyl)pyridine (NNC77-0074) on stimulus-secretion coupling in isolated pancreatic alpha- and beta-cells. NNC77-0074 stimulated glucose-dependent insulin secretion in intact mouse pancreatic islets. No effect was observed at less than or equal to 2.5 mM glucose and maximal stimulation occurred at 10-15 mM glucose. NNC77-0074 produced a concentration-dependent stimulation of insulin secretion. Half-maximal (EC50) stimulation was observed at 24 muM and at maximally stimulatory concentrations insulin release was doubled. The stimulatory action of NNC77-0074 on insulin secretion was not associated with membrane depolarisation or a change in the activity of ATP-sensitive K+ channels. Using capacitance measurements, we found that NNC77-0074 stimulated depolarisation-induced exocytosis 2.6-fold without affecting the whole-cell Ca2+ current when applied via the extracellular medium. The concentration dependence of the stimulatory action was determined by intracellular application of NNC77-0074 through the recording pipette. NNC77-0074 stimulated exocytosis half-maximal at 44 nM and at maximally stimulatory concentrations the rate of exocytosis was increased twofold. NNC77-0074 stimulated depolarised-induced insulin secretion from islets exposed to diazoxide and high external KCl (EC50 = 0.45 muM). The stimulatory action of NNC77-0074 was dependent on protein kinase C activity. NNC77-0074 potently inhibited glucagon secretion from rat islets (EC50 = I I nM). This was not associated with a change in spontaneous electrical activity and ATP-sensitive K channel activity but resulted from a reduction of the rate of Ca2+-dependent exocytosis in single rat alpha-cells (EC50=9 nM). Inhibition of exocytosis by NNC77-0074 was pertussis toxin-sensitive and mediated by activation of the protein phosphatase calcineurin. In rat somatotrophs, PC12 cells and mouse cortical neurons NNC77-0074 did not stimulate Ca2+-evoked exocytosis, whereas the other imidazoline compounds phentolamine and efaroxan produced 2.5-fold stimulation of exocytosis. Our data suggest that the imidazoline compound NNC77-0074 constitutes a novel class of antidiabetic compounds that stimulates glucose-dependent insulin release while inhibiting glucagon secretion. These actions are exclusively exerted by modulation of exocytosis of the insulin- and glucagon-containing granules. (C) 2003 Elsevier Science B.V. All rights reserved.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view