SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Olsen Marlene) "

Search: WFRF:(Olsen Marlene)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Duffy, J. Emmett, et al. (author)
  • A Pleistocene legacy structures variation in modern seagrass ecosystems
  • 2022
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 119:32
  • Journal article (peer-reviewed)abstract
    • Distribution of Earth's biomes is structured by the match between climate and plant traits, which in turn shape associated communities and ecosystem processes and services. However, that climate-trait match can be disrupted by historical events, with lasting ecosystem impacts. As Earth's environment changes faster than at any time in human history, critical questions are whether and how organismal traits and ecosystems can adjust to altered conditions. We quantified the relative importance of current environmental forcing versus evolutionary history in shaping the growth form (stature and biomass) and associated community of eelgrass (Zostera marina), a widespread foundation plant of marine ecosystems along Northern Hemisphere coastlines, which experienced major shifts in distribution and genetic composition during the Pleistocene. We found that eelgrass stature and biomass retain a legacy of the Pleistocene colonization of the Atlantic from the ancestral Pacific range and of more recent within-basin bottlenecks and genetic differentiation. This evolutionary legacy in turn influences the biomass of associated algae and invertebrates that fuel coastal food webs, with effects comparable to or stronger than effects of current environmental forcing. Such historical lags in phenotypic acclimatization may constrain ecosystem adjustments to rapid anthropogenic climate change, thus altering predictions about the future functioning of ecosystems. 
  •  
2.
  • Hadad, Ronza, 1984-, et al. (author)
  • A Chlamydia trachomatis 23S rRNA G1523A variant escaping detection in the Aptima Combo 2 assay (Hologic) was widespread across Denmark in July-September 2019
  • 2020
  • In: Acta Pathologica, Microbiologica et Immunologica Scandinavica (APMIS). - : Wiley-Blackwell Publishing Inc.. - 0903-4641 .- 1600-0463. ; 128:6, s. 440-444
  • Journal article (peer-reviewed)abstract
    • Chlamydia trachomatis infection is the most common bacterial sexually transmitted infection globally, and nucleic acid amplification tests (NAATs) are recommended for highly sensitive and specific diagnosis. In early 2019, the Finnish new variant of Chlamydia trachomatis (FI-nvCT) was identified. The FI-nvCT has a C1515T mutation in the 23S rRNA gene, making it escaping detection in the Aptima Combo 2 (AC2; Hologic) NAAT, and the FI-nvCT has been subsequently reported in Sweden and Norway. In the present study, we investigated the presence of the FI-nvCT and other AC2 diagnostic-escape CT mutants in July-September 2019 in Denmark. The FI-nvCT was present but rare in Denmark. However, another AC2 diagnostic-escape CT mutant (with a 23S rRNA G1523A mutation) was found to be widespread across Denmark, accounting for 95% (76/80) of AC2 diagnostic-escape nvCT samples from five Danish CT-diagnostic laboratories. This nvCT-G1523A has previously only been detected in one single sample in the United Kingdom and Norway, respectively. It is vital to monitor the continued stability of the NAAT targets in local, national and international settings and monitor as well as appropriately analyse incidence, unexplained shifts in diagnostics rates, and/or annual collections of samples diagnosed as negative/equivocal using NAATs with different target(s). Furthermore, diagnostic CT NAATs with dual target sequences are crucial and fortunately, an updated Hologic AC2 assay including one additional target sequence is in advanced development.
  •  
3.
  • Jahnke, Marlene, et al. (author)
  • Integrating genetics, biophysical, and demographic insights identifies critical sites for seagrass conservation
  • 2020
  • In: Ecological Applications. - : Wiley. - 1051-0761 .- 1939-5582. ; 30:6
  • Journal article (peer-reviewed)abstract
    • The eelgrass Zostera marina is an important foundation species of coastal areas in the Northern Hemisphere, but is continuing to decline, despite management actions. The development of new management tools is therefore urgent in order to prioritize limited resources for protecting meadows most vulnerable to local extinctions and identifying most valuable present and historic meadows to protect and restore, respectively. We assessed 377 eelgrass meadows along the complex coastlines of two fjord regions on the Swedish west coast-one is currently healthy and the other is substantially degraded. Shoot dispersal for all meadows was assessed with Lagrangian biophysical modeling (scale: 100-1,000 m) and used for barrier analysis and clustering; a subset (n = 22) was also assessed with population genetic methods (20 microsatellites) including diversity, structure, and network connectivity. Both approaches were in very good agreement, resulting in seven subpopulation groupings or management units (MUs). The MUs correspond to a spatial scale appropriate for coastal management of "waterbodies" used in the European Water Framework Directive. Adding demographic modeling based on the genetic and biophysical data as a third approach, we are able to assess past, present, and future metapopulation dynamics to identify especially vulnerable and valuable meadows. In a further application, we show how the biophysical approach, using eigenvalue perturbation theory (EPT) and distribution records from the 1980s, can be used to identify lost meadows where restoration would best benefit the present metapopulation. The combination of methods, presented here as a toolbox, allows the assessment of different temporal and spatial scales at the same time, as well as ranking of specific meadows according to key genetic, demographic and ecological metrics. It could be applied to any species or region, and we exemplify its versatility as a management guide for eelgrass along the Swedish west coast.
  •  
4.
  • Jahnke, Marlene, et al. (author)
  • Seascape genetics and biophysical connectivity modelling support conservation of the seagrass Zostera marina in the Skagerrak-Kattegat region of the eastern North Sea
  • 2018
  • In: Evolutionary Applications. - : Wiley. - 1752-4563 .- 1752-4571. ; 11:5, s. 645-661
  • Journal article (peer-reviewed)abstract
    • Maintaining and enabling evolutionary processes within meta-populations are critical to resistance, resilience and adaptive potential. Knowledge about which populations act as sources or sinks, and the direction of gene flow, can help to focus conservation efforts more effectively and forecast how populations might respond to future anthropogenic and environmental pressures. As a foundation species and habitat provider, Zostera marina (eelgrass) is of critical importance to ecosystem functions including fisheries. Here, we estimate connectivity of Z.marina in the Skagerrak-Kattegat region of the North Sea based on genetic and biophysical modelling. Genetic diversity, population structure and migration were analysed at 23 locations using 20 microsatellite loci and a suite of analytical approaches. Oceanographic connectivity was analysed using Lagrangian dispersal simulations based on contemporary and historical distribution data dating back to the late 19th century. Population clusters, barriers and networks of connectivity were found to be very similar based on either genetic or oceanographic analyses. A single-generation model of dispersal was not realistic, whereas multigeneration models that integrate stepping-stone dispersal and extant and historic distribution data were able to capture and model genetic connectivity patterns well. Passive rafting of flowering shoots along oceanographic currents is the main driver of gene flow at this spatial-temporal scale, and extant genetic connectivity strongly reflects the ghost of dispersal past sensu Benzie, . The identification of distinct clusters, connectivity hotspots and areas where connectivity has become limited over the last century is critical information for spatial management, conservation and restoration of eelgrass.
  •  
5.
  • Klionsky, Daniel J., et al. (author)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • In: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Research review (peer-reviewed)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
6.
  • Yu, Lei, et al. (author)
  • Ocean current patterns drive the worldwide colonization of eelgrass (Zostera marina)
  • 2023
  • In: Nature Plants. - 2055-026X .- 2055-0278. ; 9:8, s. 1207-1220
  • Journal article (peer-reviewed)abstract
    • Currents are unique drivers of oceanic phylogeography and thus determine the distribution of marine coastal species, along with past glaciations and sea-level changes. Here we reconstruct the worldwide colonization history of eelgrass (Zostera marina L.), the most widely distributed marine flowering plant or seagrass from its origin in the Northwest Pacific, based on nuclear and chloroplast genomes. We identified two divergent Pacific clades with evidence for admixture along the East Pacific coast. Two west-to-east (trans-Pacific) colonization events support the key role of the North Pacific Current. Time-calibrated nuclear and chloroplast phylogenies yielded concordant estimates of the arrival of Z. marina in the Atlantic through the Canadian Arctic, suggesting that eelgrass-based ecosystems, hotspots of biodiversity and carbon sequestration, have only been present there for ~243ky (thousand years). Mediterranean populations were founded ~44kya, while extant distributions along western and eastern Atlantic shores were founded at the end of the Last Glacial Maximum (~19kya), with at least one major refuge being the North Carolina region. The recent colonization and five- to sevenfold lower genomic diversity of the Atlantic compared to the Pacific populations raises concern and opportunity about how Atlantic eelgrass might respond to rapidly warming coastal oceans.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6
Type of publication
journal article (5)
research review (1)
Type of content
peer-reviewed (6)
Author/Editor
Moksnes, Per-Olav, 1 ... (4)
Jonsson, Per R., 195 ... (2)
Rossi, Francesca (2)
Nilsson Jacobi, Mart ... (2)
Wang, Jin (1)
Wang, Mei (1)
show more...
Strålfors, Peter (1)
Kominami, Eiki (1)
Salvesen, Guy (1)
Bonaldo, Paolo (1)
Minucci, Saverio (1)
De Milito, Angelo (1)
Agholme, Lotta (1)
Kågedal, Katarina (1)
Durbeej-Hjalt, Madel ... (1)
Liu, Wei (1)
Chen, Xi (1)
Clarke, Robert (1)
Kumar, Ashok (1)
Brest, Patrick (1)
Simon, Hans-Uwe (1)
Mograbi, Baharia (1)
Melino, Gerry (1)
Mysorekar, Indira (1)
Unemo, Magnus, 1970- (1)
Albert, Matthew L (1)
Zhu, Changlian, 1964 (1)
Lopez-Otin, Carlos (1)
Liu, Bo (1)
Ghavami, Saeid (1)
Harris, James (1)
Wang, Ke (1)
Marchetti, Piero (1)
Eklöf, Johan, 1978 (1)
Zhang, Hong (1)
Zorzano, Antonio (1)
Bozhkov, Peter (1)
Fan, Jia (1)
Petersen, Morten (1)
Skulachev, Vladimir ... (1)
Gukovsky, Ilya (1)
Fujii, Jun (1)
Przyklenk, Karin (1)
Kumar, Raj (1)
Noda, Takeshi (1)
Zhao, Ying (1)
Perry, George (1)
Boström, Christoffer (1)
Kampinga, Harm H. (1)
Zhang, Lin (1)
show less...
University
University of Gothenburg (5)
Chalmers University of Technology (2)
Stockholm University (1)
Örebro University (1)
Linköping University (1)
Lund University (1)
show more...
Karolinska Institutet (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (6)
Research subject (UKÄ/SCB)
Natural sciences (5)
Medical and Health Sciences (2)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view