SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Orntoft C.) "

Search: WFRF:(Orntoft C.)

  • Result 1-10 of 21
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Dadaev, T, et al. (author)
  • Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants
  • 2018
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1, s. 2256-
  • Journal article (peer-reviewed)abstract
    • Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • van Kessel, Kim E. M., et al. (author)
  • Molecular Markers Increase Precision of the European Association of Urology Non-Muscle-Invasive Bladder Cancer Progression Risk Groups
  • 2018
  • In: Clinical Cancer Research. - : AMER ASSOC CANCER RESEARCH. - 1078-0432 .- 1557-3265. ; 24:7, s. 1586-1593
  • Journal article (peer-reviewed)abstract
    • Purpose: The European Association of Urology (EAU) guidelines for non-muscle-invasive bladder cancer (NMIBC) recommend risk stratification based on clinicopathologic parameters. Our aim was to investigate the added value of biomarkers to improve risk stratification of NMIBC. Experimental Design: We prospectively included 1,239 patients in follow-up for NMIBC in six European countries. Fresh-frozen tumor samples were analyzed for GATA2, TBX2, TBX3, and ZIC4 methylation and FGFR3, TERT, PIK3CA, and RAS mutation status. Cox regression analyses identified markers that were significantly associated with progression to muscle-invasive disease. The progression incidence rate (PIR = rate of progression per 100 patient-years) was calculated for subgroups. Results: In our cohort, 276 patients had a low, 273 an intermediate, and 555 a high risk of tumor progression based on the EAU NMIBC guideline. Fifty-seven patients (4.6%) progressed to muscle-invasive disease. The limited number of progressors in this large cohort compared with older studies is likely due to improved treatment in the past two decades. Overall, wild-type FGFR3 and methylation of GATA2 and TBX3 were significantly associated with progression (HR = 0.34, 2.53, and 2.64, respectively). The PIR for EAU high-risk patients was 4.25. On the basis of FGFR3 mutation status and methylation of GATA2, this cohort could be reclassified into a good class (PIR = 0.86, 26.2% of patients), a moderate class (PIR = 4.32, 49.7%), and a poor class (PIR = 7.66, 24.0%). Conclusions: We conclude that the addition of selected biomarkers to the EAU risk stratification increases its accuracy and identifies a subset of NMIBC patients with a very high risk of progression. (C) 2018 AACR.
  •  
9.
  • Dyrskjot, L., et al. (author)
  • Analysis of molecular intra-patient variation and delineation of a prognostic 12-gene signature in non-muscle invasive bladder cancer; technology transfer from microarrays to PCR
  • 2012
  • In: British Journal of Cancer. - : Springer Science and Business Media LLC. - 0007-0920 .- 1532-1827. ; 107:8, s. 1392-1398
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Multiple clinical risk factors and genetic profiles have been demonstrated to predict progression of non-muscle invasive bladder cancer; however, no easily clinical applicable gene signature has been developed to predict disease progression independent of disease stage and grade. METHODS: We measured the intra-patient variation of an 88-gene progression signature using 39 metachronous tumours from 17 patients. For delineation of the optimal quantitative reverse transcriptase PCR panel of markers, we used 115 tumour samples from patients in Denmark, Sweden, UK and Spain. RESULTS: Analysis of intra-patient variation of the molecular markers showed 71% similar classification results. A final panel of 12 genes was selected, showing significant correlation with outcome. In multivariate Cox regression analysis, we found that the 12-gene signature was an independent prognostic factor (hazard ratio = 7.4 (95% confidence interval: 3.4-15.9), P < 0.001) when adjusting for stage, grade and treatment. Independent validation of the 12-gene panel and the determined cut-off values is needed and ongoing. CONCLUSION: Intra-patient marker variation in metachronous tumours is present. Therefore, to increase test sensitivity, it may be necessary to test several metachronous tumours from a patient's disease course. A PCR-based 12-gene signature significantly predicts disease progression in patients with non-muscle invasive bladder cancer.
  •  
10.
  • Dyrskjot, Lars, et al. (author)
  • Prognostic Impact of a 12-gene Progression Score in Non-muscle-invasive Bladder Cancer : A Prospective Multicentre Validation Study
  • 2017
  • In: European Urology. - : Elsevier BV. - 0302-2838 .- 1873-7560. ; 72:3, s. 461-469
  • Journal article (peer-reviewed)abstract
    • Background: Progression of non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive bladder cancer (MIBC) is life-threatening and cannot be accurately predicted using clinical and pathological risk factors. Biomarkers for stratifying patients to treatment and surveillance are greatly needed. Objective: To validate a previously developed 12-gene progression score to predict progression to MIBC in a large, multicentre, prospective study. Design, setting, and participants: We enrolled 1224 patients in ten European centres between 2008 and 2012. A total of 750 patients (851 tumours) fulfilled the inclusion and sample quality criteria for testing. Patients were followed for an average of 28 mo (range 0-76). A 12-gene real-time qualitative polymerase chain reaction assay was performed for all tumours and progression scores were calculated using a predefined formula and cut-off values. Outcome measurements and statistical analysis: We measured progression to MIBC using Cox regression analysis and log-rank tests for comparing survival distributions. Results and limitations: The progression score was significantly (p < 0.001) associated with age, stage, grade, carcinoma in situ, bacillus Calmette-Guerin treatment, European Organisation for Research and Treatment of Cancer risk score, and disease progression. Univariate Cox regression analysis showed that patients molecularly classified as high risk experienced more frequent disease progression (hazard ratio 5.08, 95% confidence interval 2.2-11.6; p < 0.001). Multivariable Cox regression models showed that the progression score added independent prognostic information beyond clinical and histopathological risk factors (p < 0.001), with an increase in concordance statistic from 0.82 to 0.86. The progression score showed high correlation (R-2 = 0.85) between paired fresh-frozen and formalin-fixed paraffin-embedded tumour specimens, supporting translation potential in the standard clinical setting. A limitation was the relatively low progression rate (5%, 37/ 750 patients). Conclusions: The 12-gene progression score had independent prognostic power beyond clinical and histopathological risk factors, and may help in stratifying NMIBC patients to optimise treatment and follow-up regimens. Patient summary: Clinical use of a 12-gene molecular test for disease aggressiveness may help in stratifying patients with non-muscle-invasive bladder cancer to optimal treatment regimens.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view