SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Orsi G.) "

Search: WFRF:(Orsi G.)

  • Result 1-10 of 34
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bongi, M, et al. (author)
  • PAMELA : A satellite experiment for antiparticles measurement in cosmic rays
  • 2004
  • In: IEEE Transactions on Nuclear Science. - 0018-9499 .- 1558-1578. ; 51:3, s. 854-859
  • Journal article (peer-reviewed)abstract
    • PAMELA is a satellite-borne experiment that will study the antiproton and positron fluxes in cosmic rays in a wide range of energy (from 80 MeV up to 190 GeV for antiprotons and from 50 MeV up to 270 GeV for positrons) and with high statistics, and that will measure the antihelium/helium ratio with a sensitivity of the order of 10(-8). The detector will fly on-board a polar orbiting Resurs DK1 satellite, which will be launched into space by a Soyuz rocket in 2004 from Baikonur cosmodrome in Kazakhstan, for a 3-year-long mission. Particle identification and energy measurements are performed in the PAMELA apparatus using the following subdetectors: a magnetic spectrometer made up of a permanent magnet equipped with double-sided microstrip silicon detectors, an electromagnetic imaging calorimeter composed of layers of tungsten absorber and silicon detectors planes, a transition radiation detector made of straw tubes interleaved with carbon fiber radiators, a plastic scintillator time-of-flight and trigger system, a set of anticounter plastic scintillator detectors, and a neutron detector. The features of the detectors and the main results obtained in beam test sessions are presented.
  •  
2.
  • Stozhkov, Y. I., et al. (author)
  • About Separation of Hadron and Electromagnetic Cascades in the Pamela Calorimeter
  • 2005
  • In: International Journal of Modern Physics A. - 0217-751X .- 1793-656X. ; 20:29, s. 6745-6748
  • Journal article (peer-reviewed)abstract
    • Results of calibration of the PAMELA instrument at the CERN facilities are discussed. In September, 2003, the calibration of the Neutron Detector together with the Calorimeter was performed with the CERN beams of electrons and protons with energies of 20-180 GeV. The implementation of the Neutron Detector increases a rejection factor of hadrons from electrons about ten times. The results of calibration are in agreement with calculations.
  •  
3.
  • Adriani, O., et al. (author)
  • An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV
  • 2009
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 458:7238, s. 607-609
  • Journal article (peer-reviewed)abstract
    • Antiparticles account for a small fraction of cosmic rays and are known to be produced in interactions between cosmic-ray nuclei and atoms in the interstellar medium(1), which is referred to as a 'secondary source'. Positrons might also originate in objects such as pulsars(2) and microquasars(3) or through dark matter annihilation(4), which would be 'primary sources'. Previous statistically limited measurements(5-7) of the ratio of positron and electron fluxes have been interpreted as evidence for a primary source for the positrons, as has an increase in the total electron+positron flux at energies between 300 and 600 GeV (ref. 8). Here we report a measurement of the positron fraction in the energy range 1.5-100 GeV. We find that the positron fraction increases sharply overmuch of that range, in a way that appears to be completely inconsistent with secondary sources. We therefore conclude that a primary source, be it an astrophysical object or dark matter annihilation, is necessary.
  •  
4.
  • Adriani, O., et al. (author)
  • Positrons and electrons in primary cosmic rays as measured in the PAMELA experiment
  • 2009
  • In: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 73:5, s. 568-570
  • Journal article (peer-reviewed)abstract
    • The PAMELA experiment is being carried out on board the Russian satellite Resurs DK1 placed in the near-earth near-polar orbit on June 15, 2006. The apparatus comprising a silicon-strip magnetic spectrometer and an electromagnetic calorimeter allows measurement of electron and positron fluxes in cosmic rays in a wide energy interval from ∼100 MeV to hundreds of GeV. The high-energy electron and positron separation technique is discussed and the data on positron-to-electron ratio in primary cosmic rays up to E ≃ 10 GeV from the 2006 - 2007 measurements are reported in this work.
  •  
5.
  • Adriani, O., et al. (author)
  • Secondary electron and positron fluxes in the near-Earth space observed in the ARINA and PAMELA experiments
  • 2009
  • In: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 73:3, s. 364-366
  • Journal article (peer-reviewed)abstract
    • Secondary electron and positron fluxes in the energy range from 3 MeV to 7 GeV were measured with the ARINA and PAMELA spectrometers onboard the Resurs-DK satellite launched on June 15, 2006 into an elliptical orbit with an inclination of 70.4° and an altitude of 350-600 km. It is shown that positrons dominate over electrons by a factor of up to 4-5 in the geomagnetic equator region (L < 1.2 and B > 0.25).
  •  
6.
  • Adriani, O., et al. (author)
  • The PAMELA space mission
  • 2008
  • In: Astroparticle, Part. Space Phys., Detect. Med. Phys. Appl. - Proc. Conf.. - : WORLD SCIENTIFIC. - 9812819088 - 9789812819086 ; , s. 858-864
  • Conference paper (peer-reviewed)abstract
    • The PAMELA (a Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics) experiment, is a satellite-borne particle spectrometer. It was launched on 15th June 2006 from the Baikonur cosmodrome in Kazakhstan, is installed into the Russian Resurs-DK1 satellite. PAMELA is composed of a time-of-flight system, a magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail catcher scintillator and a neutron detector. Among the PAMELA major objectives are the study of charged particles in the cosmic radiation, the investigation of the nature of dark matter, by mean of the measure of the cosmic-ray antiproton and positron spectra over the largest energy range ever achieved. PAMELA has been in a nearly continuous data taking mode since llth July 2006. The status of the apparatus and performances will be presented.
  •  
7.
  • Adriani, O., et al. (author)
  • The PAMELA space mission
  • 2009
  • Conference paper (peer-reviewed)abstract
    • The PAMELA (a Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics) space mission has been launched on-board the Resurs-DK1 satellite on June 15(th) 2006 from the Baikonur cosmodrome, in Kazakhstan. PAMELA is a particle spectrometer designed to study charged particles in the cosmic radiation with special focus on the investigation of the nature of dark matter, by mean of the measure of the cosmic-ray antiproton and positron spectra over the largest energy range ever achieved.
  •  
8.
  • Boezio, M., et al. (author)
  • The first year in orbit of the pamela experiment
  • 2007
  • In: Proceedings of the 30th International Cosmic Ray Conference, ICRC 2007. - : Universidad Nacional Autonoma de Mexico. ; , s. 99-102
  • Conference paper (peer-reviewed)abstract
    • On the 15th of June 2006, the PAMELA experiment mounted on the Resurs DK1 satellite, was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. PAMELA is a satellite-borne apparatus designed to study charged particles in the cosmic radiation, to investigate the nature of dark matter, measuring the cosmic-ray antiproton and positron spectra over the largest energy range ever achieved, and to search for antinuclei with unprecedented sensitivity. The PAMELA apparatus comprises a time-of-flight system, a magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail catcher scintillator and a neutron detector. We will present the status of the apparatus after one year in orbit. Furthermore, we will discuss the PAMELA in-flight performances.
  •  
9.
  • Boezio, M., et al. (author)
  • The PAMELA space experiment : First year of operation
  • 2008
  • In: Journal of Physics, Conference Series. - : Institute of Physics Publishing (IOPP). - 1742-6588 .- 1742-6596. ; 110:6
  • Journal article (peer-reviewed)abstract
    • On the 15th of June 2006 the PAMELA experiment, mounted on the Resurs DK1 satellite, was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. PAMELA is a satellite-borne apparatus designed to study charged particles in the cosmic radiation, to investigate the nature of dark matter, measuring the cosmic-ray antiproton and positron spectra over the largest energy range ever achieved, and to search for antinuclei with unprecedented sensitivity. The apparatus comprises a time-of-flight system, a silicon-microstrip magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail catcher scintillator and a neutron detector. The combination of these devices allows charged particle identification over a wide energy range. © 2008 IOP Publishing Ltd.
  •  
10.
  • Bower, K. N., et al. (author)
  • ACE-2 HILLCLOUD. An overview of the ACE-2 ground-based cloud experiment
  • 2000
  • In: Tellus. Series B: Chemical and Physical Meteorology. - : Stockholm University Press. - 0280-6509. ; 52:2, s. 750-778
  • Journal article (peer-reviewed)abstract
    • The ACE-2 HILLCLOUD experiment was carried out on the island of Tenerife in June-July 1997 to investigate the interaction of the boundary layer aerosol with a hill cap cloud forming over a ridge to the north-east of the island. The cloud was used as a natural flow through reactor to investigate the dependence of the cloud microphysics and chemistry on the characteristics of the aerosols and trace gases entering cloud, and to simultaneously study the influence of the physical and chemical processes occurring within the cloud on the size distribution, chemical and hygroscopic properties of the aerosol exiting cloud. 5 major ground base sites were used, measuring trace gases and aerosols upwind and downwind of the cloud, and cloud microphysics and chemistry and interstitial aerosol and gases within the cloud on the hill. 8 intensive measurement periods or runs were undertaken during cloud events, (nocturnally for seven of the eight runs) and were carried out in a wide range of airmass conditions from clean maritime to polluted continental. Polluted air was characterised by higher than average concentrations of ozone (> 50 ppbv), fine and accumulation mode aerosols (> 3000 and > 1500 cm -3 , respectively) and higher aerosol mass loadings. Cloud droplet number concentrations N, increased from 50 cm -3 in background maritime air to > 2500 cm -3 in aged polluted continental air, a concentration much higher than had previously been detected. Surprisingly, N was seen to vary almost linearly with aerosol number across this range. The droplet aerosol analyser (DAA) measured higher droplet numbers than the corrected forward scattering spectrometer probe (FSSP) in the most polluted air, but at other times there was good agreement (FSSP = 0.95 DAA with an r 2 = 0.89 for N < 1200 cm -3 ). Background ammonia gas concentrations were around 0.3 ppbv even in air originating over the ocean, another unexpected but important result for the region. NO 2 was present in background concentrations of typically 15 pptv to 100 pptv and NO 3 . (the nitrate radical) was observed at night throughout. Calculations suggest NO 3 . losses were mainly by reaction with DMS to produce nitric acid. Low concentrations of SO 2 (~30 pptv), HNO 3 and HCl were always present. HNO 3 concentrations were higher in polluted episodes and calculations implied that these exceeded those which could be accounted for by NO 2 oxidation. It is presumed that nitric and hydrochloric acids were present as a result of outgassing from aerosol, the HNO 3 from nitrate rich aerosol transported into the region from upwind of Tenerife, and HCl from sea salt aerosol newly formed at the sea surface. The oxidants hydrogen peroxide and ozone were abundant (i.e., were well in excess over SO 2 throughout the experiment). Occasions of significant aerosol growth following cloud processing were observed, particularly in cleaner cases. Observations and modelling suggested this was due mainly to the take up of nitric acid, hydrochloric acid and ammonia by the smallest activated aerosol particles. On a few occasions a small contribution was made by the in-cloud oxidation of S(IV). The implications of these results from HILLCLOUD for the climatologically more important stratocumulus Marine Boundary Layer (MBL) clouds are considered.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 34

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view