SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Oscarsson Tord) "

Search: WFRF:(Oscarsson Tord)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Oscarsson, Mattias, 1974- (author)
  • Modelling and design approaches of magnetostrictive actuators
  • 2007
  • Licentiate thesis (other academic/artistic)abstract
    • A magnetostrictive material elongates when it is subjected to a magnetic field. This effect can then be used to design powerful actuators. The department of electromagnetic engineering has been working with magnetostricitve material and their applications since the 1980s and is presently engaged in a project focusing on magnetostrictive transducer utilisation for the aeronautic field. The focus of the presented work has been to develop and improve methods and tools supporting the development of magnetostrictive actuators. The axial-radial model was previously developed at the department and is well suited for circular cross sections of magnetostrictive rods. It is, however, common to laminate the magnetostrictive rods resulting in rectangular cross sections. The use of Cauer circuits allows modelling of the shielding effect. This shielding effect results in non-homogenous magnetisation and stress in both rectangular and circular cross sections of the rod. A model based on Cauer circuits, including a hysteresis model based on experimental data, was developed during the project. Furthermore, it is demonstrated how figures of merit and the use of finite element methods can be used to find optimised designs in a systematic and computational efficient way. The modified generalised Fabry factor and the magnetisation inhomogeneity coefficient are two proposed new figures of merit. A Magnetostricitve material is characterised through an experimental procedure. Usually, magnetostrictive material exhibit large hysteresis. An important part of the material characterisation is the post-processing of the measurement data, including a de-hysterisation procedure. In the thesis, a de-hysterisation method which ensures energy consistent data is presented. Energy consistent material data is essential to achieve energy consistent simulations of magnetostrictive systems. It is also demonstrated how the knowledge at the department can be utilised in international projects. In an ongoing project, the department is engaged in two sub tasks. In one of these sub tasks a high torque actuator is to be developed for the helicopter industry. The developed magnetostrictive models are used to perform system simulations of such actuator systems. In the other sub task a device for power harvesting from vibrations is analysed. It has now been shown how to adapt the load impedance in order to extract maximal electric power from the device.
  •  
2.
  • Stenberg, Gabriella, et al. (author)
  • Electron-scale sheets of whistlers close to the magnetopause
  • 2005
  • In: Annales Geophysicae. - Göttingen : Copernicus gesellschaft. - 0992-7689 .- 1432-0576. ; 23:12, s. 3715-3725
  • Journal article (peer-reviewed)abstract
    • Whistler emissions close to the magnetopause on the magnetospheric side are investigated using the four Cluster spacecraft. The waves are found to be generated in thin (electron-scale) sheets moving with the plasma drift velocity. A feature in the electron data coincides with the waves; hot magnetospheric electrons disappear for a few satellite spins. This produces or enhances a temperature anisotropy, which is found to be responsible for the generation of the whistler mode waves. The high energy electrons are thought to be lost through the magnetopause and we suggest that the field lines, on which the waves are generated, are directly connected to a reconnection diffusion region at the magnetopause.
  •  
3.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view