SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Osterwalder J.) "

Search: WFRF:(Osterwalder J.)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • King, P.D.C., et al. (author)
  • Large Tunable Rashba Spin Splitting of a Two-Dimensional Electron Gas in Bi2Se3
  • 2011
  • In: Physical Review Letters. - : aps physics. ; 107:9
  • Journal article (peer-reviewed)abstract
    • We report a Rashba spin splitting of a two-dimensional electron gas in the topological insulator Bi2Se3 from angle-resolved photoemission spectroscopy. We further demonstrate its electrostatic control, and show that spin splittings can be achieved which are at least an order-of-magnitude larger than in other semiconductors. Together these results show promise for the miniaturization of spintronic devices to the nanoscale and their operation at room temperature.
  •  
2.
  • Osterwalder, S., et al. (author)
  • A dual-inlet, single detector relaxed eddy accumulation system for long-term measurement of mercury flux
  • 2016
  • In: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 9:2, s. 509-524
  • Journal article (peer-reviewed)abstract
    • The fate of anthropogenic emissions of mercury (Hg) to the atmosphere is influenced by the exchange of elemental Hg with the earth surface. This exchange holds the key to a better understanding of Hg cycling from local to global scales, which has been difficult to quantify. To advance research about land-atmosphere Hg interactions, we developed a dual-inlet, single detector relaxed eddy accumulation (REA) system. REA is an established technique for measuring turbulent fluxes of trace gases and aerosol particles in the atmospheric surface layer. Accurate determination of gaseous elemental mercury (GEM) fluxes has proven difficult due to technical challenges presented by extremely small concentration differences (typically < 0.5 ngm(-3)) between updrafts and downdrafts. We present an advanced REA design that uses two inlets and two pairs of gold cartridges for continuous monitoring of GEM fluxes. This setup reduces the major uncertainty created by the sequential sampling in many previous designs. Additionally, the instrument is equipped with a GEM reference gas generator that monitors drift and recovery rates. These innovations facilitate continuous, autonomous measurement of GEM flux. To demonstrate the system performance, we present results from field campaigns in two contrasting environments: an urban setting with a heterogeneous fetch and a boreal peatland during snowmelt. The observed average emission rates were 15 and 3 n gm(-2) h(-1), respectively. We believe that this dual-inlet, single detector approach is a significant improvement of the REA system for ultra-trace gases and can help to advance our understanding of long-term land-atmosphere GEM exchange.
  •  
3.
  • Osterwalder, S., et al. (author)
  • Comparative study of elemental mercury flux measurement techniques over a Fennoscandian boreal peatland
  • 2018
  • In: Atmospheric Environment. - : PERGAMON-ELSEVIER SCIENCE LTD. - 1352-2310 .- 1873-2844. ; 172, s. 16-25
  • Journal article (peer-reviewed)abstract
    • Quantitative estimates of the land-atmosphere exchange of gaseous elemental mercury (GEM) are biased by the measurement technique employed, because no standard method or scale in space and time are agreed upon. Here we present concurrent GEM exchange measurements over a boreal peatland using a novel relaxed eddy accumulation (REA) system, a rectangular Teflon (R) dynamic flux chamber (DFC) and a DFC designed according to aerodynamic considerations (Aero-DFC). During four consecutive days the DFCs were placed alternately on two measurement plots in every cardinal direction around the REA sampling mast. Spatial heterogeneity in peat surface characteristics (0-34 cm) was identified by measuring total mercury in eight peat cores (57 +/- 8 ng g(-1), average SE), vascular plant coverage (32-52%), water table level (4.5-14.1 cm) and dissolved gaseous elemental mercury concentrations (28-51 pg L-1) in the peat water. The GEM fluxes measured by the DFCs showed a distinct diel pattern, but no spatial difference in the average fluxes was detected (ANOVA, alpha = 0.05). Even though the correlation between the Teflon DFC and Aero-DFC was significant (r = 0.76, p < 0.05) the cumulative flux of the Aero-DFC was a factor of three larger. The average flux of the Aero-DFC (1.9 ng m(-2) h(-1)) and REA (2 ng m(-2) h(-1)) were in good agreement. The results indicate that the novel REA design is in agreement for cumulative flux estimates with the Aero-DFC, which incorporates the effect of atmospheric turbulence. The comparison was performed over a fetch with spatially rather homogenous GEM flux dynamics under fairly consistent weather conditions, minimizing the effect of weather influence on the data from the three measurement systems. However, in complex biomes with heterogeneous surface characteristics where there can be large spatial variability in GEM gas exchange, the small footprint of chambers ( < 0.2 m(2)) makes for large coefficients of variation. Thus many chamber measurement replications are needed to establish a credible biome GEM flux estimate, even for a single point in time. Dynamic flux chambers will, however, be able to resolve systematic differences between small scale features, such as experimentally manipulated plots or small scale spatial heterogeneity.
  •  
4.
  • Eilert, André, et al. (author)
  • Subsurface Oxygen in Oxide-Derived Copper Electrocatalysts for Carbon Dioxide Reduction
  • 2017
  • In: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 8:1, s. 285-290
  • Journal article (peer-reviewed)abstract
    • Copper electrocatalysts derived from an oxide have shown extraordinary electrochemical properties for the carbon dioxide reduction reaction (CO2RR). Using in situ ambient pressure X-ray photoelectron spectroscopy and quasi in situ electron energy loss spectroscopy in a transmission electron microscope, we show that there is a substantial amount of residual oxygen in nanostructured, oxide-derived copper electrocatalysts but no residual copper oxide. On the basis of these findings in combination with density functional theory simulations, we propose that residual subsurface oxygen changes the electronic structure of the catalyst and creates sites with higher carbon monoxide binding energy. If such sites are stable under the strongly reducing conditions found in CO2RR, these findings would explain the high efficiencies of oxide-derived copper in reducing carbon dioxide to multicarbon compounds such as ethylene.
  •  
5.
  • Osterwalder, S., et al. (author)
  • Critical Observations of Gaseous Elemental Mercury Air-Sea Exchange
  • 2021
  • In: Global Biogeochemical Cycles. - : American Geophysical Union (AGU). - 0886-6236 .- 1944-9224. ; 35:8
  • Journal article (peer-reviewed)abstract
    • Air-sea exchange of gaseous elemental mercury (Hg-0) is not well constrained, even though it is a major component of the global Hg cycle. Lack of Hg-0 flux measurements to validate parameterizations of the Hg-0 transfer velocity contributes to this uncertainty. We measured the Hg-0 flux on the Baltic Sea coast using micrometeorological methods (gradient-based and relaxed eddy accumulation [REA]) and also simulated the flux with a gas exchange model. The coastal waters were typically supersaturated with Hg-0 (mean +/- 1 sigma = 13.5 +/- 3.5 ng m(-3); ca. 10% of total Hg) compared to the atmosphere (1.3 +/- 0.2 ng m(-3)). The Hg-0 flux calculated using the gas exchange model ranged from 0.1-1.3 ng m(-2) h(-1) (10th and 90th percentile) over the course of the campaign (May 10-June 20, 2017) and showed a distinct diel fluctuation. The mean coastal Hg-0 fluxes determined with the two gradient-based approaches and REA were 0.3, 0.5, and 0.6 ng m(-2) h(-1), respectively. In contrast, the mean open sea Hg-0 flux measured with REA was larger (6.3 ng m(-2) h(-1)). The open sea Hg-0 flux indicated a stronger wind speed dependence for the Hg-0 transfer velocity compared to commonly used parameterizations. Although based on a limited data set, we suggest that the wind speed dependence of the Hg-0 transfer velocity is more consistent with gases that have less water solubility than CO2 (e.g., O-2). These pioneering flux measurements using micrometeorological techniques show that more such measurements would improve our understanding of air-sea Hg exchange.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view