SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Palacios Lagunas DA) "

Search: WFRF:(Palacios Lagunas DA)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Borroto-Escuela, DO, et al. (author)
  • The oxytocin receptor represents a key hub in the GPCR heteroreceptor network: potential relevance for brain and behavior
  • 2022
  • In: Frontiers in molecular neuroscience. - : Frontiers Media SA. - 1662-5099. ; 15, s. 1055344-
  • Journal article (peer-reviewed)abstract
    • In the last 10 years, it has become increasingly clear that large numbers of axon collaterals extend from the oxytocin (OXT) hypothalamic axons, especially the parvocellular components, to other brain regions. Consequently, the OXT signaling system forms, like other monoamine axons, a rich functional network across several brain regions. In this manuscript, we review the recently indicated higher order G-protein coupled heteroreceptor complexes of the oxytocin receptor (OXTR), and how these, via allosteric receptor-receptor interactions modulate the recognition, signaling, and trafficking of the participating receptor protomers and their potential impact for brain and behavior. The major focus will be on complexes of the OXTR protomer with the dopamine D2 receptor (D2R) protomer and the serotonin 2A (5-HT2AR) and 2C (5-HT2CR) receptor protomers. Specifically, the existence of D2R-OXTR heterocomplexes in the nucleus accumbens and the caudate putamen of rats has led to a postulated function for this heteromer in social behavior. Next, a physical interaction between OXTRs and the growth hormone secretagogue or ghrelin receptor (GHS-R1a) was demonstrated, which consequently was able to attenuate OXTR-mediated Gαq signaling. This highlights the potential of ghrelin-targeted therapies to modulate oxytocinergic signaling with relevance for appetite regulation, anxiety, depression, and schizophrenia. Similarly, evidence for 5-HT2AR-OXTR heteromerization in the pyramidal cell layer of CA2 and CA3 in the dorsal hippocampus and in the nucleus accumbens shell was demonstrated. This complex may offer new strategies for the treatment of both mental disease and social behavior. Finally, the 5-HT2CR-OXTR heterocomplexes were demonstrated in the CA1, CA2, and CA3 regions of the dorsal hippocampus. Future work should be done to investigate the precise functional consequence of region-specific OXTR heteromerization in the brain, as well across the periphery, and whether the integration of neuronal signals in the brain may also involve higher order OXTR-GHS-R1a heteroreceptor complexes including the dopamine (DA), noradrenaline (NA) or serotonin (5-HT) receptor protomers or other types of G-protein coupled receptors (GPCRs).
  •  
2.
  • de la Mora, MP, et al. (author)
  • Dysfunctional Heteroreceptor Complexes as Novel Targets for the Treatment of Major Depressive and Anxiety Disorders
  • 2022
  • In: Cells. - : MDPI AG. - 2073-4409. ; 11:11
  • Journal article (peer-reviewed)abstract
    • Among mental diseases, major depressive disorder (MDD) and anxiety deserve a special place due to their high prevalence and their negative impact both on society and patients suffering from these disorders. Consequently, the development of novel strategies designed to treat them quickly and efficiently, without or at least having limited side effects, is considered a highly important goal. Growing evidence indicates that emerging properties are developed on recognition, trafficking, and signaling of G-protein coupled receptors (GPCRs) upon their heteromerization with other types of GPCRs, receptor tyrosine kinases, and ionotropic receptors such as N-methyl-D-aspartate (NMDA) receptors. Therefore, to develop new treatments for MDD and anxiety, it will be important to identify the most vulnerable heteroreceptor complexes involved in MDD and anxiety. This review focuses on how GPCRs, especially serotonin, dopamine, galanin, and opioid heteroreceptor complexes, modulate synaptic and volume transmission in the limbic networks of the brain. We attempt to provide information showing how these emerging concepts can contribute to finding new ways to treat both MDD and anxiety disorders.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view