SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Palomo M. G.) "

Search: WFRF:(Palomo M. G.)

  • Result 1-10 of 130
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abelev, B., et al. (author)
  • Technical Design Report for the Upgrade of the ALICE Inner Tracking System
  • 2014
  • In: Journal of Physics G: Nuclear and Particle Physics. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 41:8
  • Journal article (peer-reviewed)abstract
    • LICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark–Gluon Plasma (QGP), using proton–proton, proton–nucleus and nucleus–nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018–2019. A key element of the ALICE upgrade is the construction of a new, ultra-light, high-resolution Inner Tracking System (ITS) based on monolithic CMOS pixel detectors. The primary focus of the ITS upgrade is on improving the performance for detection of heavy-flavour hadrons, and of thermal photons and low-mass di-electrons emitted by the QGP. With respect to the current detector, the new Inner Tracking System will significantly enhance the determination of the distance of closest approach to the primary vertex, the tracking efficiency at low transverse momenta, and the read-out rate capabilities. This will be obtained by seven concentric detector layers based on a 50 μm thick CMOS pixel sensor with a pixel pitch of about 30×30 μm2. This document, submitted to the LHCC (LHC experiments Committee) in September 2013, presents the design goals, a summary of the R&D activities, with focus on the technical implementation of the main detector components, and the projected detector and physics performance.
  •  
2.
  • Abelev, B, et al. (author)
  • Directed Flow of Charged Particles at Midrapidity Relative to the Spectator Plane in Pb-Pb Collisions at sqrt[s_{NN}]=2.76 TeV.
  • 2013
  • In: Physical Review Letters. - 1079-7114. ; 111:23
  • Journal article (peer-reviewed)abstract
    • The directed flow of charged particles at midrapidity is measured in Pb-Pb collisions at sqrt[s_{NN}]=2.76 TeV relative to the collision symmetry plane defined by the spectator nucleons. A negative slope of the rapidity-odd directed flow component with approximately 3 times smaller magnitude than found at the highest RHIC energy is observed. This suggests a smaller longitudinal tilt of the initial system and disfavors the strong fireball rotation predicted for the LHC energies. The rapidity-even directed flow component is measured for the first time with spectators and found to be independent of pseudorapidity with a sign change at transverse momenta p_{T} between 1.2 and 1.7 GeV/c. Combined with the observation of a vanishing rapidity-even p_{T} shift along the spectator deflection this is strong evidence for dipolelike initial density fluctuations in the overlap zone of the nuclei. Similar trends in the rapidity-even directed flow and the estimate from two-particle correlations at midrapidity, which is larger by about a factor of 40, indicate a weak correlation between fluctuating participant and spectator symmetry planes. These observations open new possibilities for investigation of the initial conditions in heavy-ion collisions with spectator nucleons.
  •  
3.
  • Abelev, B., et al. (author)
  • Multiplicity dependence of two-particle azimuthal correlations in pp collisions at the LHC
  • 2013
  • In: Journal of High Energy Physics. - 1029-8479. ; :9
  • Journal article (peer-reviewed)abstract
    • We present the measurements of particle pair yields per trigger particle obtained from di-hadron azimuthal correlations in pp collisions at root s = 0.9, 2.76, and 7TeV recorded with the ALICE detector. The yields are studied as a function of the charged particle multiplicity. Taken together with the single particle yields the pair yields provide information about parton fragmentation at low transverse momenta, as well as on the contribution of multiple parton interactions to particle production. Data are compared to calculations using the PYTHIA6, PYTHIA8, and PHOJET event generators.
  •  
4.
  • Abelev, B., et al. (author)
  • Upgrade of the ALICE Experiment Letter Of Intent
  • 2014
  • In: Journal of Physics G: Nuclear and Particle Physics. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 41:8
  • Journal article (peer-reviewed)abstract
    • ALICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark–Gluon Plasma (QGP), using proton–proton, proton–nucleus and nucleus–nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018–2019. These plans are presented in the ALICE Upgrade Letter of Intent, submitted to the LHCC (LHC experiments Committee) in September 2012. In order to fully exploit the physics reach of the LHC in this field, high-precision measurements of the heavy-flavour production, quarkonia, direct real and virtual photons, and jets are necessary. This will be achieved by an increase of the LHC Pb–Pb instant luminosity up to 6×1027 cm−2s−1 and running the ALICE detector with the continuous readout at the 50 kHz event rate. The physics performance accessible with the upgraded detector, together with the main detector modifications, are presented.
  •  
5.
  • Adam, J., et al. (author)
  • Measurement of charm and beauty production at central rapidity versus charged-particle multiplicity in proton-proton collisions at root s=7 TeV
  • 2015
  • In: Journal of High Energy Physics. - 1029-8479. ; :9
  • Journal article (peer-reviewed)abstract
    • Prompt D meson and non-prompt J/psi yields are studied as a function of the multiplicity of charged particles produced in inelastic proton-proton collisions at a centre-of-mass energy of root s = 7 TeV. The results are reported as a ratio between yields in a given multiplicity interval normalised to the multiplicity-integrated ones (relative yields). They are shown as a function of the multiplicity of charged particles normalised to the average value for inelastic collisions (relative charged-particle multiplicity). D-0, D+ and D*+ mesons are measured in five p(T) intervals from 1 GeV/c to 20 GeV/c and for |y| < 0.5 via their hadronic decays. The D-meson relative yield is found to increase with increasing charged-particle multiplicity. For events with multiplicity six times higher than the average multiplicity of inelastic collisions, a yield enhancement of a factor about 15 relative to the multiplicity-integrated yield in inelastic collisions is observed. The yield enhancement is independent of transverse momentum within the uncertainties of the measurement. The D-0-meson relative yield is also measured as a function of the relative multiplicity at forward pseudo-rapidity. The non-prompt J/psi, i.e. the B hadron, contribution to the inclusive J/psi production is measured in the di-electron decay channel at central rapidity. It is evaluated for p(T) > 1.3 GeV/c and |y| < 0.9, and extrapolated to p(T) > 0. The fraction of non-prompt J/psi the inclusive J/psi yields shows no dependence on the charged-particle multiplicity at central rapidity. Charm and beauty hadron relative yields exhibit a similar increase with increasing charged-particle multiplicity. The measurements are compared to PYTHIA 8, EPOS 3 and percolation calculations.
  •  
6.
  • Adam, J., et al. (author)
  • Precision measurement of the mass difference between light nuclei and anti-nuclei
  • 2015
  • In: Nature Physics. - 1745-2473. ; 11:10, s. 120-811
  • Journal article (peer-reviewed)abstract
    • The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons(1,2). The extension of such measurement from (anti-)baryons to (anti-) nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-) nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories(3), but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons ((d) over bar), and He-3 and (3)(He) over bar nuclei carried out with the ALICE (A Large Ion Collider Experiment)(4) detector in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirms CPT invariance to an unprecedented precision in the sector of light nuclei(5,6). This fundamental symmetry of nature, which exchanges particles with anti-particles, implies that all physics laws are the same under the simultaneous reversal of charge(s) (charge conjugation C), reflection of spatial coordinates (parity transformation P) and time inversion (T).
  •  
7.
  • Abbas, E., et al. (author)
  • Mid-rapidity anti-baryon to baryon ratios in pp collisions at root s=0.9, 2.76 and 7 TeV measured by ALICE
  • 2013
  • In: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 73:7
  • Journal article (peer-reviewed)abstract
    • The ratios of yields of anti-baryons to baryons probes the mechanisms of baryon-number transport. Results for (p) over bar /p, (Lambda) over bar/Lambda, (Xi) over bar (+)/(Xi) over bar (-) and (Omega) over bar (+)/(Omega) over bar (-) in pp collisions at root s = 0.9, 2.76 and 7 TeV, measured with the ALICE detector at the LHC, are reported. Within the experimental uncertainties and ranges covered by our measurement, these ratios are independent of rapidity, transverse momentum and multiplicity for all measured energies. The results are compared to expectations from event generators, such as PYTHIA and HIJING/B, that are used to model the particle production in pp collisions. The energy dependence of (p) over bar /p, (Lambda) over bar/(Lambda) over bar, (Xi) over bar (+)/(Xi) over bar (-) and (Omega) over bar (+)/(Omega) over bar (-), reaching values compatible with unity for root s = 7 TeV, complement the earlier (p) over bar /p measurement of ALICE. These dependencies can be described by exchanges with the Regge-trajectory intercept of alpha(J) approximate to 0.5, which are suppressed with increasing rapidity interval Delta y. Any significant contribution of an exchange not suppressed at large Delta y (reached at LHC energies) is disfavoured.
  •  
8.
  • Abelev, B., et al. (author)
  • D Meson Elliptic Flow in Noncentral Pb-Pb Collisions at root(S)(NN)=2.76 TeV
  • 2013
  • In: Physical Review Letters. - 1079-7114. ; 111:10
  • Journal article (peer-reviewed)abstract
    • Azimuthally anisotropic distributions of D-0, D+, and D*+ mesons were studied in the central rapidity region (vertical bar y vertical bar < 0.8) in Pb-Pb collisions at a center-of-mass energy root(S)(NN) = 2.76 TeV per nucleon-nucleon collision, with the ALICE detector at the LHC. The second Fourier coefficient upsilon(2) (commonly denoted elliptic flow) was measured in the centrality class 30%-50% as a function of the D meson transverse momentum p(T), in the range 2-16 GeV/c. The measured upsilon(2) of D mesons is comparable in magnitude to that of light-flavor hadrons. It is positive in the range 2 < p(T) < 6 GeV/c with 5.7 sigma significance, based on the combination of statistical and systematic uncertainties.
  •  
9.
  • Abelev, B., et al. (author)
  • Measurement of inelastic, single- and double-diffraction cross sections in proton-proton collisions at the LHC with ALICE
  • 2013
  • In: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 73:6
  • Journal article (peer-reviewed)abstract
    • Measurements of cross sections of inelastic and diffractive processes in proton-proton collisions at LHC energies were carried out with the ALICE detector. The fractions of diffractive processes in inelastic collisions were determined from a study of gaps in charged particle pseudorapidity distributions: for single diffraction (diffractive mass M-X < 200 GeV/c(2)) sigma(SD)/sigma(INEL) = 0.21 +/- 0.03, 0.20(-0.08)(+0.07,) and 0.20(-0.07)(+0.04), respectively at centre-of-mass energies root s = 0.9, 2.76, and 7 TeV; for double diffraction (for a pseudorapidity gap Delta eta > 3) sigma(DD)/sigma(INEL) = 0.11 +/- 0.03, 0.12 +/- 0.05, and 0.12(-0.04)(+0.05), respectively at root s = 0.9, 2.76, and 7 TeV. To measure the inelastic cross section, beam properties were determined with van der Meer scans, and, using a simulation of diffraction adjusted to data, the following values were obtained: sigma(INEL) = 62.8(-4.0)(+2.4)(model) +/- 1.2(lumi) mb at root s = 2.76 TeV and 73.2(-4.6)(+2.0)(model) +/- 2.6(lumi) mb at root s = 7 TeV. The single- and double-diffractive cross sections were calculated combining relative rates of diffraction with inelastic cross sections. The results are compared to previous measurements at proton-antiproton and proton-proton colliders at lower energies, to measurements by other experiments at the LHC, and to theoretical models.
  •  
10.
  • Adam, J., et al. (author)
  • Centrality dependence of particle production in p-Pb collisions at root s(NN)=5.02 TeV
  • 2015
  • In: Physical Review C (Nuclear Physics). - 0556-2813. ; 91:6
  • Journal article (peer-reviewed)abstract
    • We report measurements of the primary charged-particle pseudorapidity density and transverse momentum distributions in p-Pb collisions at root s(NN) = 5.02 TeV and investigate their correlation with experimental observables sensitive to the centrality of the collision. Centrality classes are defined by using different event-activity estimators, i.e., charged-particle multiplicities measured in three different pseudorapidity regions as well as the energy measured at beam rapidity (zero degree). The procedures to determine the centrality, quantified by the number of participants (N-part) or the number of nucleon-nucleon binary collisions (N-coll) are described. We show that, in contrast to Pb-Pb collisions, in p-Pb collisions large multiplicity fluctuations together with the small range of participants available generate a dynamical bias in centrality classes based on particle multiplicity. We propose to use the zero-degree energy, which we expect not to introduce a dynamical bias, as an alternative event-centrality estimator. Based on zero-degree energy-centrality classes, the N-part dependence of particle production is studied. Under the assumption that the multiplicity measured in the Pb-going rapidity region scales with the number of Pb participants, an approximate independence of the multiplicity per participating nucleon measured at mid-rapidity of the number of participating nucleons is observed. Furthermore, at high-pT the p-Pb spectra are found to be consistent with the pp spectra scaled by N-coll for all centrality classes. Our results represent valuable input for the study of the event-activity dependence of hard probes in p-Pb collisions and, hence, help to establish baselines for the interpretation of the Pb-Pb data.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 130

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view