SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Peart Claire R.) "

Search: WFRF:(Peart Claire R.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gemmell, Neil J., et al. (author)
  • The tuatara genome reveals ancient features of amniote evolution
  • 2020
  • In: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 584:7821, s. 403-409
  • Journal article (peer-reviewed)abstract
    • The tuatara (Sphenodon punctatus)—the only living member of the reptilian order Rhynchocephalia (Sphenodontia), once widespread across Gondwana1,2—is an iconic species that is endemic to New Zealand2,3. A key link to the now-extinct stem reptiles (from which dinosaurs, modern reptiles, birds and mammals evolved), the tuatara provides key insights into the ancestral amniotes2,4. Here we analyse the genome of the tuatara, which—at approximately 5 Gb—is among the largest of the vertebrate genomes yet assembled. Our analyses of this genome, along with comparisons with other vertebrate genomes, reinforce the uniqueness of the tuatara. Phylogenetic analyses indicate that the tuatara lineage diverged from that of snakes and lizards around 250 million years ago. This lineage also shows moderate rates of molecular evolution, with instances of punctuated evolution. Our genome sequence analysis identifies expansions of proteins, non-protein-coding RNA families and repeat elements, the latter of which show an amalgam of reptilian and mammalian features. The sequencing of the tuatara genome provides a valuable resource for deep comparative analyses of tetrapods, as well as for tuatara biology and conservation. Our study also provides important insights into both the technical challenges and the cultural obligations that are associated with genome sequencing.
  •  
2.
  • Peart, Claire R., et al. (author)
  • Determinants of genetic variation across eco-evolutionary scales in pinnipeds
  • 2020
  • In: Nature Ecology & Evolution. - : NATURE PUBLISHING GROUP. - 2397-334X. ; 4:8, s. 1095-1104
  • Journal article (peer-reviewed)abstract
    • The effective size of a population (N-e), which determines its level of neutral variability, is a key evolutionary parameter. N-e can substantially depart from census sizes of present-day breeding populations (N-C) as a result of past demographic changes, variation in life-history traits and selection at linked sites. Using genome-wide data we estimated the long-term coalescent N-e for 17 pinniped species represented by 36 population samples (total n = 458 individuals). N-e estimates ranged from 8,936 to 91,178, were highly consistent within (sub)species and showed a strong positive correlation with N-C (R-adj(2) = 0.59; P = 0.0002). N-e/N-C ratios were low (mean, 0.31; median, 0.13) and co-varied strongly with demographic history and, to a lesser degree, with species' ecological and life-history variables such as breeding habitat. Residual variation in N-e/N-C, after controlling for past demographic fluctuations, contained information about recent population size changes during the Anthropocene. Specifically, species of conservation concern typically had positive residuals indicative of a smaller contemporary N-C than would be expected from their long-term N-e. This study highlights the value of comparative population genomic analyses for gauging the evolutionary processes governing genetic variation in natural populations, and provides a framework for identifying populations deserving closer conservation attention.
  •  
3.
  • Shafer, Aaron B. A., et al. (author)
  • Bioinformatic processing of RAD-seq data dramatically impacts downstream population genetic inference
  • 2017
  • In: Methods in Ecology and Evolution. - 2041-210X. ; 8:8, s. 907-917
  • Journal article (peer-reviewed)abstract
    • 1. Restriction site-associated DNA sequencing (RAD-seq) provides high-resolution population genomic data at low cost, and has become an important component in ecological and evolutionary studies. As with all high-throughput technologies, analytic strategies require critical validation to ensure precise and unbiased interpretation. 2. To test the impact of bioinformatic data processing on downstream population genetic inferences, we analysed mammalian RAD-seq data (>100 individuals) with 312 combinations of methodology (de novo vs. mapping to references of increasing divergence) and filtering criteria (missing data, HWE, F-IS, coverage, mapping and genotype quality). In an effort to identify commonalities and biases in all pipelines, we computed summary statistics (nr. loci, nr. SNP, pi, Het(obs), F-IS, F-ST, N-e and m) and compared the results to independent null expectations (isolation-by-distance correlation, expected transition-to-transversion ratio T-s/T-v and Mendelian mismatch rates of known parent-offspring trios). 3. We observed large differences between reference-based and de novo approaches, the former generally calling more SNPs and reducing F-IS and T-s/T-v. Data completion levels showed little impact on most summary statistics, and FST estimates were robust across all pipelines. The site frequency spectrum was highly sensitive to the chosen approach as reflected in large variance of parameter estimates across demographic scenarios (single-population bottlenecks and isolation-with-migration model). Null expectations were best met by reference-based approaches, although contingent on the specific criteria. 4. We recommend that RAD-seq studies employ reference-based approaches to a closely related genome, and due to the high stochasticity associated with the pipeline advocate the use of multiple pipelines to ensure robust population genetic and demographic inferences.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view