SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Persiani A. M.) "

Search: WFRF:(Persiani A. M.)

  • Result 1-10 of 27
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Glasbey, JC, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Aprile, E., et al. (author)
  • The XENON1T dark matter experiment
  • 2017
  • In: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:12
  • Journal article (peer-reviewed)abstract
    • The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2t liquid xenon inventory, 2.0t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented.
  •  
6.
  • Aprile, E., et al. (author)
  • Low-mass dark matter search using ionization signals in XENON100
  • 2016
  • In: Physical Review D. - 2470-0010. ; 94:9
  • Journal article (peer-reviewed)abstract
    • We perform a low-mass dark matter search using an exposure of 30 kg x yr with the XENON100 detector. By dropping the requirement of a scintillation signal and using only the ionization signal to determine the interaction energy, we lowered the energy threshold for detection to 0.7 keV for nuclear recoils. No dark matter detection can be claimed because a complete background model cannot be constructed without a primary scintillation signal. Instead, we compute an upper limit on the WIMP-nucleon scattering cross section under the assumption that every event passing our selection criteria could be a signal event. Using an energy interval from 0.7 keV to 9.1 keV, we derive a limit on the spin-independent WIMP-nucleon cross section that excludes WIMPs with a mass of 6 GeV/c(2) above 1.4 x 10(-41) cm(2) at 90% confidence level.
  •  
7.
  • Aprile, E., et al. (author)
  • Search for two-neutrino double electron capture of Xe-124 with XENON100
  • 2017
  • In: Physical Review C. - 2469-9985. ; 95:2
  • Journal article (peer-reviewed)abstract
    • Two-neutrino double electron capture is a rare nuclear decay where two electrons are simultaneously captured from the atomic shell. For Xe-124 this process has not yet been observed and its detection would provide a new reference for nuclear matrix element calculations. We have conducted a search for two-neutrino double electron capture from the K shell of 124Xe using 7636 kg d of data from the XENON100 dark matter detector. Using a Bayesian analysis we observed no significant excess above background, leading to a lower 90% credibility limit on the half-life T-1/2 > 6.5 x 10(20) yr. We have also evaluated the sensitivity of the XENON1T experiment, which is currently being commissioned, and found a sensitivity of T-1/2 > 6.1 x 10(22) yr after an exposure of 2 t yr.
  •  
8.
  • Aprile, E., et al. (author)
  • XENON100 dark matter results from a combination of 477 live days
  • 2016
  • In: Physical Review D. - 2470-0010 .- 2470-0029. ; 94:12
  • Journal article (peer-reviewed)abstract
    • We report on WIMP search results of the XENON100 experiment, combining three runs summing up to 477 live days from January 2010 to January 2014. Data from the first two runs were already published. A blind analysis was applied to the last run recorded between April 2013 and January 2014 prior to combining the results. The ultralow electromagnetic background of the experiment, similar to 5 x 10(-3) events/(keV(ee) x kg x day)) before electronic recoil rejection, together with the increased exposure of 48 kg x yr, improves the sensitivity. A profile likelihood analysis using an energy range of (6.6-43.3) keV(nr) sets a limit on the elastic, spin-independent WIMP-nucleon scattering cross section for WIMP masses above 8 GeV/c(2), with a minimum of 1.1 x 10(-45) cm(2) at 50 GeV/c(2) and 90% confidence level. We also report updated constraints on the elastic, spin-dependent WIMP-nucleon cross sections obtained with the same data. We set upper limits on the WIMP-neutron (proton) cross section with a minimum of 2.0 x 10(-40) cm(2) (52 x 10(-40) cm(2)) at a WIMP mass of 50 GeV/c(2), at 90% confidence level.
  •  
9.
  •  
10.
  • Aprile, E., et al. (author)
  • Material radioassay and selection for the XENON1T dark matter experiment
  • 2017
  • In: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:12
  • Journal article (peer-reviewed)abstract
    • The XENON1T dark matter experiment aims to detect weakly interactingmassive particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T experiment. Using gamma-ray spectroscopy and mass spectrometry techniques, systematic measurements of trace radioactive impurities in over one hundred samples within a wide range of materials were performed. The measured activities allowed for stringent selection and placement of materials during the detector construction phase and provided the input for XENON1T detection sensitivity estimates through Monte Carlo simulations.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view