SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Persson Per O A Professor 1971 ) "

Search: WFRF:(Persson Per O A Professor 1971 )

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Tao, Quanzheng, 1989- (author)
  • Synthesis and characterization of two- and three-dimensional nanolaminated carbides
  • 2020
  • Doctoral thesis (other academic/artistic)abstract
    • This thesis is focused towards the synthesis and characterization of novel nanolaminated materials in primarily bulk (powder) form. Of particular interest is magnetic materials, or laminates that can be used as precursor for two-dimensional (2D) materials. 2D materials typically display a large surface-to-volume ratio, and as such they are very promising for applications within energy storage and catalysis. A more recently discovered family of 2D transition metal carbides/nitrides, called MXenes, are currently attracting a lot of attention. MXenes are produced by selective etching of parent 3D nanolaminates, so called MAX phases, facilitating removal of selected atomic layers, and formation of 2D sheets.In my work on new nanolaminates as precursors for 2D materials, I have synthesized (Mo2/3Sc1/3)2AlC and have studied its crystal structure. It was found that Mo and Sc are chemically ordered in the metal layers, with the in-plane ordering motivating the notation i-MAX for this new type of MAX phase alloy. By selective etching of Sc and Al, we thereafter produced a 2D materials with ordered vacancies, Mo1.33C, and studied the electrochemical properties. It was found that the material displayed a high capacitance, ~1200 F cm-3, which is 65% higher that the counterpart without vacancies, Mo2C.I also synthesized a previously not known out-of-plane ordered Mo2ScAlC2 MAX phase. By selective etching of Al, we produced a 2D material, Mo2ScC2, which is correspondingly ordered in the out-of-plane direction. Another related laminated material was also discovered and synthesized, Sc2Al2C3, and its crystal structure was determined. The material is potentially useful for conversion into a 2D material. I have also shown that Sc2Al2C3 is an example of a series of materials with the same crystal structure, with Sc replaced by other metals.Magnetic materials are used in many applications, such as for data storage devices. In particular, layered magnetic materials are of interest due to their anisotropic structure and potential formation of interesting magnetic characteristics. I have been synthesizing and characterizing magnetic nanolaminates, starting with the (V,Mn)3GaC2 MAX phase in the form of an epitaxial thin film. Analysis of the magnetic behavior showed a ferromagnetic response above room temperature I thereafter showed that our previously discovered family of i-MAX phases could be expanded with a subclass of ordered nanolaminates based on rare earth (RE) elements, of the general formula (Mo2/3RE1/3)2AlC , where RE=Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu. I studied their crystal structure by scanning transmission microscopy (STEM), X-ray diffraction (XRD), and neutron diffraction. We found that these phases can crystalize in three different structures, of space group C2/m, C2/c, and Cmcm, respectively. The magnetic behavior was studied and the magnetic structure of two materials could be determined. We suggest that the complex behavior identified is due to competing magnetic interaction and frustration.I also synthesized another rare earth-based nanolaminate, Mo4Ce4Al7C3. The crystal structure was investigated by single crystal X-ray diffraction and STEM. Magnetization analysis reveal a ferromagnetic ground state below 10.5 K. X-ray absorption near-edge structure provide evidence that Ce is in a mixed-valence state. X-ray magnetic circular dichroism shows that only one of the two Ce sites are magnetic. 
  •  
2.
  • Bakhit, Babak, 1983-, et al. (author)
  • Age hardening in superhard ZrB2-rich Zr1-xTaxBy thin films
  • 2021
  • In: Scripta Materialia. - : Elsevier. - 1359-6462 .- 1872-8456. ; 191, s. 120-125
  • Journal article (peer-reviewed)abstract
    • We recently showed that sputter-deposited Zr1-xTaxBy thin films have hexagonal AlB2-type columnar nanostructure in which column boundaries are B-rich for x < 0.2, while Ta-rich for x ≥ 0.2. As-deposited layers with x ≥ 0.2 exhibit higher hardness and, simultaneously, enhanced toughness. Here, we study the mechanical properties of ZrB2.4, Zr0.8Ta0.2B1.8, and Zr0.7Ta0.3B1.5 films annealed in Ar atmosphere as a function of annealing temperature Ta up to 1200 °C. In-situ and ex-situ nanoindentation analyses reveal that all films undergo age hardening up to Ta = 800 °C, with the highest hardness achieved for Zr0.8Ta0.2B1.8 (45.5±1.0 GPa). The age hardening, which occurs without any phase separation or decomposition, can be explained by point-defect recovery that enhances chemical bond density. Although hardness decreases at Ta > 800 °C due mainly to recrystallization, column coarsening, and planar defect annihilation, all layers show hardness values above 34 GPa over the entire Ta range.
  •  
3.
  • Thörnberg, Jimmy, et al. (author)
  • Microstructure and materials properties of understoichiometric TiBx thin films grown by HiPIMS
  • 2020
  • In: Surface & Coatings Technology. - : ELSEVIER SCIENCE SA. - 0257-8972 .- 1879-3347. ; 404
  • Journal article (peer-reviewed)abstract
    • TiBx thin films with a B content of 1.43 <= x <= 2.70 were synthesized using high-power impulse magnetron sputtering (HiPIMS) and direct-current magnetron sputtering (DCMS). HiPIMS allows compositions ranging from understoichiometric to overstoichiometric dense TiBx thin films with a B/Ti ratio between 1.43 and 2.06, while DCMS yields overstoichiometric TiBx films with a B/Ti ratio ranging from 2.20 to 2.70. Excess B in overstoichiometric TiBx thin films from DCMS results in a hardness up to 37.7 +/- 0.8 GPa, attributed to the formation of an amorphous B-rich tissue phase interlacing stoichiometric TiB2 columnar structures. We furthermore show that understoichiometric TiB1.43 thin films synthesized by HiPIMS, where the deficiency of B is found to be accommodated by Ti-rich planar defects, exhibit a superior hardness of 43.9 +/- 0.9 GPa. The apparent fracture toughness and thermal conductivity of understoichiometric TiB1.43 HiPIMS films are 4.2 +/- 0.1 MPa root m and 2.46 +/- 0.22 W/(m.K), respectively, as compared to corresponding values for overstoichiometric TiB2.70 DCMS film samples of 3.1 +/- 0.1 MPa root m and 4.52 +/- 0.45 W/(mK). This work increases the fundamental understanding of understoichiometric TiBx thin films and their materials properties, and shows that understoichiometric films have properties matching or going beyond those with excess B.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view