SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Petzold Linda R.) "

Search: WFRF:(Petzold Linda R.)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Feigin, Valery L., et al. (author)
  • Global, regional, and national burden of neurological disorders, 1990–2016 : a systematic analysis for the Global Burden of Disease Study 2016
  • 2019
  • In: Lancet Neurology. - : Elsevier. - 1474-4422 .- 1474-4465. ; 18:5, s. 459-480
  • Journal article (peer-reviewed)abstract
    • Background: Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders.Methods: We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach.Findings: Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247–308]) and second leading cause of deaths (9·0 million [8·8–9·4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34–44] and DALYs by 15% [9–21]) whereas their age-standardised rates decreased (deaths by 28% [26–30] and DALYs by 27% [24–31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42·2% [38·6–46·1]), migraine (16·3% [11·7–20·8]), Alzheimer's and other dementias (10·4% [9·0–12·1]), and meningitis (7·9% [6·6–10·4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1·12 [1·05–1·20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0·7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88·8% (86·5–90·9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22·3% [11·8–35·1] of DALYs are risk attributable) and idiopathic epilepsy (14·1% [10·8–17·5] of DALYs are risk attributable).Interpretation: Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies.Funding: Bill & Melinda Gates Foundation.
  •  
2.
  •  
3.
  •  
4.
  • Golkaram, Mahdi, et al. (author)
  • The role of chromatin density in cell population heterogeneity during stem cell differentiation
  • 2017
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7, s. 13307:1-11
  • Journal article (peer-reviewed)abstract
    • We incorporate three-dimensional (3D) conformation of chromosome (Hi-C) and single-cell RNA sequencing data together with discrete stochastic simulation, to explore the role of chromatin reorganization in determining gene expression heterogeneity during development. While previous research has emphasized the importance of chromatin architecture on activation and suppression of certain regulatory genes and gene networks, our study demonstrates how chromatin remodeling can dictate gene expression distribution by folding into distinct topological domains. We hypothesize that the local DNA density during differentiation accentuate transcriptional bursting due to the crowding effect of chromatin. This phenomenon yields a heterogeneous cell population, thereby increasing the potential of differentiation of the stem cells.
  •  
5.
  • Jiang, Richard M., et al. (author)
  • Accelerated regression-based summary statistics for discrete stochastic systems via approximate simulators
  • 2021
  • In: BMC Bioinformatics. - : BioMed Central (BMC). - 1471-2105. ; 22
  • Journal article (peer-reviewed)abstract
    • Background: Approximate Bayesian Computation (ABC) has become a key tool for calibrating the parameters of discrete stochastic biochemical models. For higher dimensional models and data, its performance is strongly dependent on having a representative set of summary statistics. While regression-based methods have been demonstrated to allow for the automatic construction of effective summary statistics, their reliance on first simulating a large training set creates a significant overhead when applying these methods to discrete stochastic models for which simulation is relatively expensive. In this tau work, we present a method to reduce this computational burden by leveraging approximate simulators of these systems, such as ordinary differential equations and tau-Leaping approximations.Results: We have developed an algorithm to accelerate the construction of regression-based summary statistics for Approximate Bayesian Computation by selectively using the faster approximate algorithms for simulations. By posing the problem as one of ratio estimation, we use state-of-the-art methods in machine learning to show that, in many cases, our algorithm can significantly reduce the number of simulations from the full resolution model at a minimal cost to accuracy and little additional tuning from the user. We demonstrate the usefulness and robustness of our method with four different experiments.Conclusions: We provide a novel algorithm for accelerating the construction of summary statistics for stochastic biochemical systems. Compared to the standard practice of exclusively training from exact simulator samples, our method is able to dramatically reduce the number of required calls to the stochastic simulator at a minimal loss in accuracy. This can immediately be implemented to increase the overall speed of the ABC workflow for estimating parameters in complex systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view