SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Phelan Megan E.) "

Search: WFRF:(Phelan Megan E.)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Beal, Jacob, et al. (author)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • In: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • Enright, Michael J., et al. (author)
  • Role of Atomic Structure on Exciton Dynamics and Photoluminescence in NIR Emissive InAs/InP/ZnSe Quantum Dots
  • 2022
  • In: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 126:17, s. 7576-7587
  • Journal article (peer-reviewed)abstract
    • The development of bright, near-infrared-emissive quantum dots (QDs) is a necessary requirement for the realization of important new classes of technology. Specifically, there exist significant needs for brighter, heavy metal-free, near-infrared (NIR) QDs for applications with high radiative efficiency that span diverse applications, including down-conversion emitters for high-performance luminescent solar concentrators. We use a combination of theoretical and experimental approaches to synthesize bright, NIR luminescent InAs/InP/ZnSe QDs and elucidate fundamental material attributes that remain obstacles for development of near-unity NIR QD luminophores. First, using Monte Carlo ray tracing, we identify the atomic and electronic structural attributes of InAs core/shell, NIR emitters, whose luminescence properties can be tailored by synthetic design to match most beneficially those of high-performance, single-band-gap photovoltaic devices based on important semiconductor materials, such Si or GaAs. Second, we synthesize InAs/InP/ZnSe QDs based on the optical attributes found to maximize LSC performance and develop methods to improve the emissive qualities of NIR emitters with large, tunable Stokes ratios, narrow emission linewidths, and high luminescence quantum yields (here reaching 60 +/- 2%). Third, we employ atomistic electronic structure calculations to explore charge carrier behavior at the nanoscale affected by interfacial atomic structures and find that significant exciton occupation of the InP shell occurs in most cases despite the InAs/InP type I bulk band alignment. Furthermore, the density of the valence band maximum state extends anisotropically through the (111) crystal planes to the terminal InP surfaces/interfaces, indicating that surface defects, such as unpassivated phosphorus dangling bonds, located on the (111) facets play an outsized role in disrupting the valence band maximum and quenching photoluminescence.
  •  
3.
  • Potter, Maggie M., et al. (author)
  • Autonomous Light Management in Flexible Photoelectrochromic Films Integrating High Performance Silicon Solar Microcells
  • 2020
  • In: ACS Applied Energy Materials. - : AMER CHEMICAL SOC. - 2574-0962. ; 3:2, s. 1540-1551
  • Journal article (peer-reviewed)abstract
    • Commercial smart window technologies for dynamic light and heat management in building and automotive environments traditionally rely on electrochromic (EC) materials powered by an external source. This design complicates building-scale installation requirements and substantially increases costs for applications in retrofit construction. Self-powered photoelectrochromic (PEC) windows are an intuitive alternative wherein a photovoltaic (PV) material is used to power the EC device, which modulates the transmission of the incident solar flux. The PV component in this application must be sufficiently transparent and produce enough power to efficiently modulate the EC device transmission. Here, we propose Si solar microcells (mu-cells) that are (i) small enough to be visually transparent to the eye and (ii) thin enough to enable flexible PEC devices. Visual transparency is achieved when Si mu-cells are arranged in high pitch (i.e., low-integration density) form factors while maintaining the advantages of a single-crystalline PV material (i.e., long lifetime and high performance). Additionally, the thin dimensions of these Si mu-cells enable fabrication on flexible substrates to realize flexible PEC devices. The current work demonstrates this concept using WO3 as the EC material and V2O5 as the ion storage layer, where each component is fabricated via sol-gel methods that afford improved prospects for scalability and tunability in comparison to thermal evaporation methods. The EC devices display fast switching times, as low as 8 s, with a modulation in transmission as high as 33%. Integration with two Si mu-cells in series (affording a 1.12 V output) demonstrates an integrated PEC module design with switching times of less than 3 min and a modulation in transmission of 32% with an unprecedented EC:PV areal ratio.
  •  
4.
  • Potter, Maggie M., et al. (author)
  • Silicon Heterojunction Microcells
  • 2021
  • In: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 13:38, s. 45600-45608
  • Journal article (peer-reviewed)abstract
    • We report the design, fabrication, and characterization of silicon heterojunction microcells, a new type of photovoltaic cell that leverages high-efficiency bulk wafers in a microscale form factor, while also addressing the challenge of passivating microcell sidewalls to mitigate carrier recombination. We present synthesis methods exploiting either dry etching or laser cutting to realize microcells with native oxide-based edge passivation. Measured microcell performance for both fabrication processes is compared to that in simulations. We characterize the dependence of microcell open-circuit voltage (V-oc) on the cell area-perimeter ratio and examine synthesis processes that affect edge passivation quality, such as sidewall damage removal, the passivation material, and the deposition technique. We report the highest Si microcell V-oc to date (588 mV, for a 400 mu m x 400 mu m x 80 mu m device), demonstrate V-oc improvements with deposited edge passivation of up to 55 mV, and outline a pathway to achieve microcell efficiencies surpassing 15% for such device sizes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view