SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pirhashemi Mahsa) "

Search: WFRF:(Pirhashemi Mahsa)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Adam, Rania Elhadi, 1978-, et al. (author)
  • Graphene-based plasmonic nanocomposites for highly enhanced solar-driven photocatalytic activities
  • 2019
  • In: RSC Advances. - Cambridge : Royal Meteorological Society. - 2046-2069. ; 9:52, s. 30585-30598
  • Journal article (peer-reviewed)abstract
    • High-efficiency photocatalysts are crucial for the removal of organic pollutants and environmental sustainability. In the present work, we report on a new low-temperature hydrothermal chemical method, assisted by ultrasonication, to synthesize disruptive plasmonic ZnO/graphene/Ag/AgI nanocomposites for solar-driven photocatalysis. The plasmonic nanocomposites were investigated by a wide range of characterization techniques, confirming successful formation of photocatalysts with excellent degradation efficiency. Using Congo red as a model dye molecule, our experimental results demonstrated a photocatalytic reactivity exceeding 90% efficiency after one hour simulated solar irradiation. The significantly enhanced degradation efficiency is attributed to improved electronic properties of the nanocomposites by hybridization of the graphene and to the addition of Ag/AgI which generates a strong surface plasmon resonance effect in the metallic silver further improving the photocatalytic activity and stability under solar irradiation. Scavenger experiments suggest that superoxide and hydroxyl radicals are responsible for the photodegradation of Congo red. Our findings are important for the fundamental understanding of the photocatalytic mechanism of ZnO/graphene/Ag/AgI nanocomposites and can lead to further development of novel efficient photocatalyst materials.
  •  
2.
  • Adam, Rania E., et al. (author)
  • Graphene-based plasmonic nanocomposites for highly enhanced solar-driven photocatalytic activities
  • 2019
  • In: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 9:52, s. 30585-30598
  • Journal article (peer-reviewed)abstract
    • High-efficiency photocatalysts are crucial for the removal of organic pollutants and environmental sustainability. In the present work, we report on a new low-temperature hydrothermal chemical method, assisted by ultrasonication, to synthesize disruptive plasmonic ZnO/graphene/Ag/AgI nanocomposites for solar-driven photocatalysis. The plasmonic nanocomposites were investigated by a wide range of characterization techniques, confirming successful formation of photocatalysts with excellent degradation efficiency. Using Congo red as a model dye molecule, our experimental results demonstrated a photocatalytic reactivity exceeding 90% efficiency after one hour simulated solar irradiation. The significantly enhanced degradation efficiency is attributed to improved electronic properties of the nanocomposites by hybridization of the graphene and to the addition of Ag/AgI which generates a strong surface plasmon resonance effect in the metallic silver further improving the photocatalytic activity and stability under solar irradiation. Scavenger experiments suggest that superoxide and hydroxyl radicals are responsible for the photodegradation of Congo red. Our findings are important for the fundamental understanding of the photocatalytic mechanism of ZnO/graphene/Ag/AgI nanocomposites and can lead to further development of novel efficient photocatalyst materials.
  •  
3.
  • Elhadi Adam, Rania, et al. (author)
  • ZnO/Ag/Ag2WO4 photo-electrodes with plasmonic behavior for enhanced photoelectrochemical water oxidation
  • 2019
  • In: RSC Advances. - : Royal Society of Chemistry. - 2046-2069. ; 9:15, s. 8271-8279
  • Journal article (peer-reviewed)abstract
    • Ag-based compounds are excellent co-catalyst that can enhance harvesting visible light and increase photo-generated charge carrier separation owing to its surface plasmon resonance (SPR) effect in photoelectrochemical (PEC) applications. However, the PEC performance of a ZnO/Ag/Ag2WO4 heterostructure with SPR behavior has not been fully studied so far. Here we report the preparation of a ZnO/Ag/Ag2WO4 photo-electrode with SPR behavior by a low temperature hydrothermal chemical growth method followed by a successive ionic layer adsorption and reaction (SILAR) method. The properties of the prepared samples were investigated by different characterization techniques, which confirm that Ag/Ag2WO4 was deposited on the ZnO NRs. The Ag2WO4/Ag/ZnO photo-electrode showed an enhancement in PEC performance compared to bare ZnO NRs. The observed enhancement is attributed to the red shift of the optical absorption spectrum of the Ag2WO4/Ag/ZnO to the visible region (>400 nm) and to the SPR effect of surface metallic silver (Ag0) particles from the Ag/Ag2WO4 that could generate electron–hole pairs under illumination of low energy visible sun light. Finally, we proposed the PEC mechanism of the Ag2WO4/Ag/ZnO photo-electrode with an energy band structure and possible electron–hole separation and transportation in the ZnO/Ag/Ag2WO4 heterostructure with SPR effect for water oxidation. ER
  •  
4.
  • Pirhashemi, Mahsa, et al. (author)
  • n–n ZnO–Ag2CrO4 heterojunction photoelectrodes with enhanced visible-light photoelectrochemical properties
  • 2019
  • In: RSC Advances. - : Royal Society of Chemistry. - 2046-2069. ; 9:14, s. 7992-8001
  • Journal article (peer-reviewed)abstract
    • In this study, ZnO nanorods (NRs) were hydrothermally grown on an Au-coated glass substrate at a relatively low temperature (90 °C), followed by the deposition of Ag2CrO4 particles via a successive ionic layer adsorption and reaction (SILAR) route. The content of the Ag2CrO4 particles on ZnO NRs was controlled by changing the number of SILAR cycles. The fabricated ZnO–Ag2CrO4 heterojunction photoelectrodes were subjected to morphological, structural, compositional, and optical property analyses; their photoelectrochemical (PEC) properties were investigated under simulated solar light illumination. The photocurrent responses confirmed that the ability of the ZnO–Ag2CrO4 heterojunction photoelectrodes to separate the photo-generated electron–hole pairs is stronger than that of bare ZnO NRs. Impressively, the maximum photocurrent density of about 2.51 mA cm−2 at 1.23 V (vs. Ag/AgCl) was measured for the prepared ZnO–Ag2CrO4 photoelectrode with 8 SILAR cycles (denoted as ZnO–Ag2CrO4-8), which exhibited about 3-fold photo-enhancement in the current density as compared to bare ZnO NRs (0.87 mA cm−2) under similar conditions. The improvement in photoactivity was attributed to the ideal band gap and high absorption coefficient of the Ag2CrO4 particles, which resulted in improved solar light absorption properties. Furthermore, an appropriate annealing treatment was proven to be an efficient process to increase the crystallinity of Ag2CrO4 particles deposited on ZnO NRs, which improved the charge transport characteristics of the ZnO–Ag2CrO4-8 photoelectrode annealed at 200 °C and increased the performance of the photoelectrode. The results achieved in the present work present new insights for designing n–n heterojunction photoelectrodes for efficient and cost-effective PEC applications and solar-to-fuel energ
  •  
5.
  • Pirhashemi, Mahsa, et al. (author)
  • RETRACTED: Polyethylene glycol-doped BiZn2VO6 as a high efficiency solar-light-activated photocatalyst with substantial durability toward photodegradation of organic contaminations
  • 2018
  • In: RSC Advances. - : ROYAL SOC CHEMISTRY. - 2046-2069. ; 8:65, s. 37480-37491
  • Journal article (peer-reviewed)abstract
    • In this study, we focus on a simple, low-priced, and mild condition hydrothermal route to construct BiZn2VO6 nanocompounds (NCs) as a novel photocatalyst with strong solar Eight absorption ability for environmental purification using solar energy. NCs were further doped with polyethylene glycol (PEG) to improve their photocatalytic efficiency for photodegradation processes through inhibition of fast charge carrier recombination rates and higher charge separation efficiency. Surface morphology, phase structure, optical characteristics, and band structure of the as-prepared samples were analyzed using XRD, EDX, XPS, SEM, UV-vis spectroscopy, CL, and BET techniques. PEG-doped BiZn2VO6 NCs were applied as effective materials to degrade various kinds of organic pollutants including cationic and anionic types, and these NCs exhibited excellent photocatalytic efficiency as compared to traditional photocatalysts. In particular, the PEG-doped BiZn2VO6 (0.10% w/v) photocatalyst exhibited highly enhanced photocatalytic performance with improvements of about 46.4, 28.3, and 7.23 folds compared with PEG-doped ZnO nanorods (NRs), pristine BiVO4, and BiZn2VO6 samples, respectively, for the decomposition of congo red (CR) dye. After 40 minutes of sunlight irradiation, 97.4% of CR was decomposed. In this study, scavenging experiments indicated that both hydroxyl radicals and holes play dominant roles in CR photodegradation under simulated solar Eight irradiation. Meanwhile, the optimal photocatalyst demonstrated good reproducibility and stability for successive cycles of photocatalysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view