SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pitout F.) "

Search: WFRF:(Pitout F.)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Berthomier, M., et al. (author)
  • Alfven : magnetosphere-ionosphere connection explorers
  • 2012
  • In: Experimental astronomy. - Dordrecht : Springer. - 0922-6435 .- 1572-9508. ; 33:2-3, s. 445-489
  • Journal article (peer-reviewed)abstract
    • The aurorae are dynamic, luminous displays that grace the night skies of Earth's high latitude regions. The solar wind emanating from the Sun is their ultimate energy source, but the chain of plasma physical processes leading to auroral displays is complex. The special conditions at the interface between the solar wind-driven magnetosphere and the ionospheric environment at the top of Earth's atmosphere play a central role. In this Auroral Acceleration Region (AAR) persistent electric fields directed along the magnetic field accelerate magnetospheric electrons to the high energies needed to excite luminosity when they hit the atmosphere. The "ideal magnetohydrodynamics" description of space plasmas which is useful in much of the magnetosphere cannot be used to understand the AAR. The AAR has been studied by a small number of single spacecraft missions which revealed an environment rich in wave-particle interactions, plasma turbulence, and nonlinear acceleration processes, acting on a variety of spatio-temporal scales. The pioneering 4-spacecraft Cluster magnetospheric research mission is now fortuitously visiting the AAR, but its particle instruments are too slow to allow resolve many of the key plasma physics phenomena. The Alfv,n concept is designed specifically to take the next step in studying the aurora, by making the crucial high-time resolution, multi-scale measurements in the AAR, needed to address the key science questions of auroral plasma physics. The new knowledge that the mission will produce will find application in studies of the Sun, the processes that accelerate the solar wind and that produce aurora on other planets.
  •  
2.
  • Lockwood, M, et al. (author)
  • Coordinated Cluster and ground-based instrument observations of transient changes in the magnetopause boundary layer during an interval of predominantly northward IMF : relation to reconnection pulses and FTE signatures
  • 2001
  • In: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 19:10-12, s. 1613-1640
  • Research review (peer-reviewed)abstract
    • We study a series of transient entries into the low-latitude boundary layer (LLBL) of all four Cluster spacecraft during an outbound pass through the mid-afternoon magnetopause ([X(GSM), Y(GSM), Z(GSM)] approximate to [2, 7, 9] R(E)). The events take place during an interval of northward IMF, as seen in the data from the ACE satellite and lagged by a propagation delay of 75 min that is well-defined by two separate studies: (1) the magnetospheric variations prior to the northward turning (Lockwood et al., 2001, this issue) and (2) the field clock angle seen by Cluster after it had emerged into the magnetosheath (Opgenoorth et al., 2001, this issue). With an additional lag of 16.5 min, the transient LLBL events cor-relate well with swings of the IMF clock angle (in GSM) to near 90degrees. Most of this additional lag is explained by ground-based observations, which reveal signatures of transient reconnection in the pre-noon sector that then take 10-15 min to propagate eastward to 15 MLT, where they are observed by Cluster. The eastward phase speed of these signatures agrees very well with the motion deduced by the cross-correlation of the signatures seen on the four Cluster spacecraft. The evidence that these events are reconnection pulses includes: transient erosion of the noon 630 nm (cusp/cleft) aurora to lower latitudes; transient and travelling enhancements of the flow into the polar cap, imaged by the AMIE technique; and poleward-moving events moving into the polar cap, seen by the EISCAT Svalbard Radar (ESR). A pass of the DMSP-F15 satellite reveals that the open field lines near noon have been opened for some time: the more recently opened field lines were found closer to dusk where the flow transient and the poleward-moving event intersected the satellite pass. The events at Cluster have ion and electron characteristics predicted and observed by Lockwood and Hapgood (1998) for a Flux Transfer Event (FTE), with allowance for magnetospheric ion reflection at Alfvenic disturbances in the magnetopause reconnection layer. Like FTEs, the events are about 1 R(E) in their direction of motion and show a rise in the magnetic field strength, but unlike FTEs, in general, they show no pressure excess in their core and hence, no characteristic bipolar signature in the boundary-normal component. However, most of the events were observed when the magnetic field was southward, i.e. on the edge of the interior magnetic cusp, or when the field was parallel to the magnetic equatorial plane. Only when the satellite begins to emerge from the exterior boundary (when the field was northward), do the events start to show a pressure excess in their core and the consequent bipolar signature. We identify the events as the first observations of FTEs at middle altitudes.
  •  
3.
  • Pitout, F., et al. (author)
  • Swarm and ESR observations of the ionospheric response to a field-aligned current system in the high-latitude midnight sector
  • 2015
  • In: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 42:11, s. 4270-4279
  • Journal article (peer-reviewed)abstract
    • We present a conjunction between the Swarm fleet and the European Incoherent Scatter Svalbard Radar (ESR) on 9 January 2014. The Swarm orbit in the early phase of the mission gives us the unique opportunity of sequencing the temporal evolution of the observed field-aligned current system in the nightside, near magnetic local midnight. These field-aligned currents are seen to move poleward through the radar field of view and to affect the observed ionosphere. The upward field-aligned current (FAC) is responsible, at least in part, for the heating of the ionospheric electrons. It is less clear whether the downward FAC cools the ionosphere. We use the TRANSCAR model of the ionosphere to quantify the thermoelectric effect that comes into play. Finally, we compare the plasma parameters measured by the Langmuir probe on board Swarm and the ESR and conclude on an agreement within the errors.
  •  
4.
  •  
5.
  •  
6.
  • Pitout, F., Bosqueg, J.M., Alcayde, D., Denig, W. and Reme, H. (author)
  • Observation of the cusp region under northward IMF.
  • 2001
  • In: Annales Geophysicae. ; 19, s. 11-15
  • Journal article (peer-reviewed)abstract
    • Using EISCAT radar data, we find that electrons are strongly heated in the magnetic field-line direction during high electric field events. The remote site data show that the electron temperature increases in almost the same way in the field-perpendicular
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view