SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pitteri S.) "

Search: WFRF:(Pitteri S.)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Piening, B. D., et al. (author)
  • Integrative Personal Omics Profiles during Periods of Weight Gain and Loss
  • 2018
  • In: Cell Systems. - : Elsevier BV. - 2405-4712 .- 2405-4720. ; 6:2
  • Journal article (peer-reviewed)abstract
    • Advances in omics technologies now allow an unprecedented level of phenotyping for human diseases, including obesity, in which individual responses to excess weight are heterogeneous and unpredictable. To aid the development of better understanding of these phenotypes, we performed a controlled longitudinal weight perturbation study combining multiple omics strategies (genomics, transcriptomics, multiple proteomics assays, metabolomics, and microbiomics) during periods of weight gain and loss in humans. Results demonstrated that: (1) weight gain is associated with the activation of strong inflammatory and hypertrophic cardiomyopathy signatures in blood; (2) although weight loss reverses some changes, a number of signatures persist, indicative of long-term physiologic changes; (3) we observed omics signatures associated with insulin resistance that may serve as novel diagnostics; (4) specific biomolecules were highly individualized and stable in response to perturbations, potentially representing stable personalized markers. Most data are available open access and serve as a valuable resource for the community.
  •  
2.
  • Aebersold, Ruedi, et al. (author)
  • How many human proteoforms are there?
  • 2018
  • In: Nature Chemical Biology. - : NATURE PUBLISHING GROUP. - 1552-4450 .- 1552-4469. ; 14:3, s. 206-214
  • Journal article (peer-reviewed)abstract
    • Despite decades of accumulated knowledge about proteins and their post-translational modifications (PTMs), numerous questions remain regarding their molecular composition and biological function. One of the most fundamental queries is the extent to which the combinations of DNA-, RNA-and PTM-level variations explode the complexity of the human proteome. Here, we outline what we know from current databases and measurement strategies including mass spectrometry-based proteomics. In doing so, we examine prevailing notions about the number of modifications displayed on human proteins and how they combine to generate the protein diversity underlying health and disease. We frame central issues regarding determination of protein-level variation and PTMs, including some paradoxes present in the field today. We use this framework to assess existing data and to ask the question, "How many distinct primary structures of proteins (proteoforms) are created from the 20,300 human genes?" We also explore prospects for improving measurements to better regularize protein-level biology and efficiently associate PTMs to function and phenotype.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view