SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pohjoismäki Jaakko) "

Search: WFRF:(Pohjoismäki Jaakko)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Roslin, Tomas, et al. (author)
  • A molecular-based identification resource for the arthropods of Finland
  • 2022
  • In: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 22:2, s. 803-822
  • Journal article (peer-reviewed)abstract
    • To associate specimens identified by molecular characters to other biological knowledge, we need reference sequences annotated by Linnaean taxonomy. In this study, we (1) report the creation of a comprehensive reference library of DNA barcodes for the arthropods of an entire country (Finland), (2) publish this library, and (3) deliver a new identification tool for insects and spiders, as based on this resource. The reference library contains mtDNA COI barcodes for 11,275 (43%) of 26,437 arthropod species known from Finland, including 10,811 (45%) of 23,956 insect species. To quantify the improvement in identification accuracy enabled by the current reference library, we ran 1000 Finnish insect and spider species through the Barcode of Life Data system (BOLD) identification engine. Of these, 91% were correctly assigned to a unique species when compared to the new reference library alone, 85% were correctly identified when compared to BOLD with the new material included, and 75% with the new material excluded. To capitalize on this resource, we used the new reference material to train a probabilistic taxonomic assignment tool, FinPROTAX, scoring high success. For the full-length barcode region, the accuracy of taxonomic assignments at the level of classes, orders, families, subfamilies, tribes, genera, and species reached 99.9%, 99.9%, 99.8%, 99.7%, 99.4%, 96.8%, and 88.5%, respectively. The FinBOL arthropod reference library and FinPROTAX are available through the Finnish Biodiversity Information Facility (www.laji.fi) at https://laji.fi/en/theme/protax. Overall, the FinBOL investment represents a massive capacity-transfer from the taxonomic community of Finland to all sectors of society. 
  •  
2.
  • Doimo, Mara, et al. (author)
  • Enhanced mitochondrial G-quadruplex formation impedes replication fork progression leading to mtDNA loss in human cells.
  • 2023
  • In: Nucleic acids research. - : Oxford University Press. - 1362-4962 .- 0305-1048. ; 51:14, s. 7392-7408
  • Journal article (peer-reviewed)abstract
    • Mitochondrial DNA (mtDNA) replication stalling is considered an initial step in the formation of mtDNA deletions that associate with genetic inherited disorders and aging. However, the molecular details of how stalled replication forks lead to mtDNA deletions accumulation are still unclear. Mitochondrial DNA deletion breakpoints preferentially occur at sequence motifs predicted to form G-quadruplexes (G4s), four-stranded nucleic acid structures that can fold in guanine-rich regions. Whether mtDNA G4s form in vivo and their potential implication for mtDNA instability is still under debate. In here, we developed new tools to map G4s in the mtDNA of living cells. We engineered a G4-binding protein targeted to the mitochondrial matrix of a human cell line and established the mtG4-ChIP method, enabling the determination of mtDNA G4s under different cellular conditions. Our results are indicative of transient mtDNA G4 formation in human cells. We demonstrate that mtDNA-specific replication stalling increases formation of G4s, particularly in the major arc. Moreover, elevated levels of G4 block the progression of the mtDNA replication fork and cause mtDNA loss. We conclude that stalling of the mtDNA replisome enhances mtDNA G4 occurrence, and that G4s not resolved in a timely manner can have a negative impact on mtDNA integrity.
  •  
3.
  • Pohjoismäki, Jaakko L. O., et al. (author)
  • Known Unknowns of Mammalian Mitochondrial DNA Maintenance
  • 2018
  • In: Bioessays. - : Wiley-Blackwell. - 0265-9247 .- 1521-1878. ; 40:9
  • Journal article (peer-reviewed)abstract
    • Mammalian mitochondrial DNA (mtDNA) replication and repair have been studied intensively for the last 50 years. Although recently advances in elucidating the molecular mechanisms of mtDNA maintenance and the proteins involved in these have been made, there are disturbing gaps between the existing theoretical models and experimental observations. Conflicting data and hypotheses exist about the role of RNA and ribonucleotides in mtDNA replication, but also about the priming of replication and the formation of pathological rearrangements. In the presented review, we have attempted to match these loose ends and draft consensus where it can be found, while identifying outstanding issues for future research.
  •  
4.
  • Pohjoismäki, Jaakko L O, et al. (author)
  • Postnatal cardiomyocyte growth and mitochondrial reorganization cause multiple changes in the proteome of human cardiomyocytes.
  • 2013
  • In: Molecular Biosystems. - : Royal Society of Chemistry (RSC). - 1742-206X .- 1742-2051. ; 9:6
  • Journal article (peer-reviewed)abstract
    • Fetal (fCM) and adult cardiomyocytes (aCM) significantly differ from each other both by structure and biochemical properties. aCM own a higher mitochondrial mass compared to fCM due to increased energy demand and show a greater density and higher degree of structural organization of myofibrils. The energy metabolism in aCM relies virtually completely on β-oxidation of fatty acids while fCM use carbohydrates. Rewinding of the aCM phenotype (de-differentiation) arises frequently in diseased hearts spurring questions about its functional relevance and the extent of de-differentiation. Yet, surprisingly little is known about the changes in the human proteome occurring during maturation of fCM to aCM. Here, we examined differences between human fetal and adult hearts resulting in the quantification of 3500 proteins. Moreover, we analyzed mitochondrial proteomes from both stages to obtain more detailed insight into underlying biochemical differences. We found that the majority of changes between fCM and aCM were attributed to growth and maturation of cardiomyocytes. As expected, adult hearts showed higher mitochondrial mass and expressed increased levels of proteins involved in energy metabolism but relatively lower copy numbers of mitochondrial DNA (mtDNA) per total cell volume. We uncovered that the TFAM/mtDNA ratio was kept constant during postnatal development despite a significant increase of mitochondrial protein per mtDNA in adult mitochondria, which revises previous concepts.
  •  
5.
  • Torregrosa-Muñumer, Rubén, et al. (author)
  • PrimPol is required for replication reinitiation after mtDNA damage
  • 2017
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 114:43, s. 11398-11403
  • Journal article (peer-reviewed)abstract
    • Eukaryotic PrimPol is a recently discovered DNA-dependent DNA primase and translesion synthesis DNA polymerase found in the nucleus and mitochondria. Although PrimPol has been shown to be required for repriming of stalled replication forks in the nucleus, its role in mitochondria has remained unresolved. Here we demonstrate in vivo and in vitro that PrimPol can reinitiate stalled mtDNA replication and can prime mtDNA replication from nonconventional origins. Our results not only help in the understanding of how mitochondria cope with replicative stress but can also explain some controversial features of the lagging-strand replication.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view