SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Porra L.) "

Search: WFRF:(Porra L.)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Porra, L., et al. (author)
  • Quantitative Imaging of Regional Aerosol Deposition, Lung Ventilation and Morphology by Synchrotron Radiation CT
  • 2018
  • In: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 8
  • Journal article (peer-reviewed)abstract
    • To understand the determinants of inhaled aerosol particle distribution and targeting in the lung, knowledge of regional deposition, lung morphology and regional ventilation, is crucial. No single imaging modality allows the acquisition of all such data together. Here we assessed the feasibility of dual-energy synchrotron radiation imaging to this end in anesthetized rabbits; both in normal lung (n = 6) and following methacholine (MCH)-induced bronchoconstriction (n = 6), a model of asthma. We used K-edge subtraction CT (KES) imaging to quantitatively map the regional deposition of iodine-containing aerosol particles. Morphological and regional ventilation images were obtained, followed by quantitative regional iodine deposition maps, after 5 and 10 minutes of aerosol administration. Iodine deposition was markedly inhomogeneous both in normal lung and after induced bronchoconstrition. Deposition was significantly reduced in the MCH group at both time points, with a strong dependency on inspiratory flow in both conditions (R-2 = 0.71; p < 0.0001). We demonstrate for the first time, the feasibility of KES CT for quantitative imaging of lung deposition of aerosol particles, regional ventilation and morphology. Since these are among the main factors determining lung aerosol deposition, we expect this imaging approach to bring new contributions to the understanding of lung aerosol delivery, targeting, and ultimately biological efficacy.
  •  
3.
  • Borges, João Batista, et al. (author)
  • Zero expiratory pressure and low oxygen concentration promote heterogeneity of regional ventilation and lung densities
  • 2016
  • In: Acta Anaesthesiologica Scandinavica. - : Wiley. - 0001-5172 .- 1399-6576. ; 60:7, s. 958-968
  • Journal article (peer-reviewed)abstract
    • BackgroundIt is not well known what is the main mechanism causing lung heterogeneity in healthy lungs under mechanical ventilation. We aimed to investigate the mechanisms causing heterogeneity of regional ventilation and parenchymal densities in healthy lungs under anesthesia and mechanical ventilation. MethodsIn a small animal model, synchrotron imaging was used to measure lung aeration and regional-specific ventilation (sV.). Heterogeneity of ventilation was calculated as the coefficient of variation in sV. (CVsV.). The coefficient of variation in lung densities (CVD) was calculated for all lung tissue, and within hyperinflated, normally and poorly aerated areas. Three conditions were studied: zero end-expiratory pressure (ZEEP) and FIO2 0.21; ZEEP and FIO2 1.0; PEEP 12 cmH(2)O and F(I)O(2)1.0 (Open Lung-PEEP = OLP). ResultsThe mean tissue density at OLP was lower than ZEEP-1.0 and ZEEP-0.21. There were larger subregions with low sV. and poor aeration at ZEEP-0.21 than at OLP: 12.9 9.0 vs. 0.6 +/- 0.4% in the non-dependent level, and 17.5 +/- 8.2 vs. 0.4 +/- 0.1% in the dependent one (P = 0.041). The CVsV. of the total imaged lung at PEEP 12 cmH(2)O was significantly lower than on ZEEP, regardless of FIO2, indicating more heterogeneity of ventilation during ZEEP (0.23 +/- 0.03 vs. 0.54 +/- 0.37, P = 0.049). CVD changed over the different mechanical ventilation settings (P = 0.011); predominantly, CVD increased during ZEEP. The spatial distribution of the CVD calculated for the poorly aerated density category changed with the mechanical ventilation settings, increasing in the dependent level during ZEEP. ConclusionZEEP together with low FIO2 promoted heterogeneity of ventilation and lung tissue densities, fostering a greater amount of airway closure and ventilation inhomogeneities in poorly aerated regions.
  •  
4.
  • Remes, Tiina Maria, et al. (author)
  • Radiation-induced accelerated aging of the brain vasculature in young adult survivors of childhood brain tumors
  • 2020
  • In: Neuro-Oncology Practice. - : Oxford University Press (OUP). - 2054-2577 .- 2054-2585. ; 7:4, s. 415-427
  • Journal article (peer-reviewed)abstract
    • BackgroundCranial radiotherapy may damage the cerebral vasculature. The aim of this study was to understand the prevalence and risk factors of cerebrovascular disease (CVD) and white matter hyperintensities (WMHs) in childhood brain tumors (CBT) survivors treated with radiotherapy.MethodsSeventy CBT survivors who received radiotherapy were enrolled in a cross-sectional study at a median 20 years after radiotherapy cessation. The prevalence of and risk factors for CVD were investigated using MRI, MRA, and laboratory testing. Tumors, their treatment, and stroke-related data were retrieved from patients’ files.ResultsForty-four individuals (63%) had CVD at a median age of 27 years (range, 16-43 years). The prevalence rates at 20 years for CVD, small-vessel disease, and large-vessel disease were 52%, 38%, and 16%, respectively. Ischemic infarcts were diagnosed in 6 survivors, and cerebral hemorrhage in 2. Lacunar infarcts were present in 7, periventricular or deep WMHs in 34 (49%), and mineralizing microangiopathy in 21 (30%) survivors. Multiple pathologies were detected in 44% of the participants, and most lesions were located in a high-dose radiation area. Higher blood pressure was associated with CVD and a presence of WMHs. Higher cholesterol levels increased the risk of ischemic infarcts and WMHs, and lower levels of high-density lipoprotein and higher waist circumference increased the risk of lacunar infarcts.ConclusionsTreating CBTs with radiotherapy increases the risk of early CVD and WMHs in young adult survivors. These results suggest an urgent need for investigating CVD prevention in CBT patients.
  •  
5.
  • Remes, Tiina M., et al. (author)
  • Radiation-Induced Meningiomas After Childhood Brain Tumor : A Magnetic Resonance Imaging Screening Study
  • 2019
  • In: Journal of Adolescent and Young Adult Oncology. - : Mary Ann Liebert. - 2156-5333 .- 2156-535X. ; 8:5, s. 593-601
  • Journal article (peer-reviewed)abstract
    • Purpose: Childhood brain tumors (CBTs) and their treatment increase the risk of secondary neoplasms (SNs). We studied the incidence of secondary craniospinal tumors with magnetic resonance imaging (MRI) screening in a national cohort of survivors of CBT treated with radiotherapy, and we analyzed the Finnish Cancer Registry (FCR) data on SNs in survivors of CBT with radiotherapy registered as a part of the primary tumor treatment. Methods: A total of 73 survivors of CBT participated in the MRI study (mean follow-up of 19 +/- 6.2 years). The incidence of SNs in a cohort of CBT patients (N = 569) was retrieved from the FCR (mean follow-up of 11 +/- 12.9 years). Brain tumors were diagnosed at age <= 16 years between the years 1970 and 2008 in the clinical study and the years 1963 and 2010 in the FCR population. Results: Secondary brain tumors, meningiomas in all and schwannoma in one, were found in 6 of the 73 (8.2%) survivors with a mean of 23 +/- 4.3 years after the diagnosis of the primary tumor. The cumulative incidence was 10.2% (95% confidence interval [CI] 3.9-25.1) in 25 years of follow-up. In the FCR data, the 25-year cumulative incidence of SNs was 2.4% (95% CI 1.3-4.1); only two brain tumors, no meningiomas, were registered. Conclusion: Survivors of CBT treated with radiotherapy have a high incidence of meningiomas, which are rarely registered in the FCR.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view