SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Prabhu Sameer) "

Search: WFRF:(Prabhu Sameer)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Mishra, Ashish Ranjan, et al. (author)
  • SignEEG v1.0: Multimodal Dataset with Electroencephalography and Hand-written Signature for Biometric Systems
  • 2024
  • In: Scientific Data. - : Nature Research. - 2052-4463. ; 11
  • Journal article (peer-reviewed)abstract
    • Handwritten signatures in biometric authentication leverage unique individual characteristics for identification, offering high specificity through dynamic and static properties. However, this modality faces significant challenges from sophisticated forgery attempts, underscoring the need for enhanced security measures in common applications. To address forgery in signature-based biometric systems, integrating a forgery-resistant modality, namely, noninvasive electroencephalography (EEG), which captures unique brain activity patterns, can significantly enhance system robustness by leveraging multimodality’s strengths. By combining EEG, a physiological modality, with handwritten signatures, a behavioral modality, our approach capitalizes on the strengths of both, significantly fortifying the robustness of biometric systems through this multimodal integration. In addition, EEG’s resistance to replication offers a high-security level, making it a robust addition to user identification and verification. This study presents a new multimodal SignEEG v1.0 dataset based on EEG and hand-drawn signatures from 70 subjects. EEG signals and hand-drawn signatures have been collected with Emotiv Insight and Wacom One sensors, respectively. The multimodal data consists of three paradigms based on mental, & motor imagery, and physical execution: i) thinking of the signature’s image, (ii) drawing the signature mentally, and (iii) drawing a signature physically. Extensive experiments have been conducted to establish a baseline with machine learning classifiers. The results demonstrate that multimodality in biometric systems significantly enhances robustness, achieving high reliability even with limited sample sizes. We release the raw, pre-processed data and easy-to-follow implementation details.
  •  
2.
  •  
3.
  • Saini, Rajkumar, Dr. 1988-, et al. (author)
  • Imagined Object Recognition Using EEG-Based Neurological Brain Signals
  • 2022
  • In: Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2021). - Cham : Springer. ; , s. 305-319
  • Conference paper (peer-reviewed)abstract
    • Researchers have been using Electroencephalography (EEG) to build Brain-Computer Interfaces (BCIs) systems. They have had a lot of success modeling brain signals for applications, including emotion detection, user identification, authentication, and control. The goal of this study is to employ EEG-based neurological brain signals to recognize imagined objects. The user imagines the object after looking at the same on the monitor screen. The EEG signal is recorded when the user thinks up about the object. These EEG signals were processed using signal processing methods, and machine learning algorithms were trained to classify the EEG signals. The study involves coarse and fine level EEG signal classification. The coarse-level classification categorizes the signals into three classes (Char, Digit, Object), whereas the fine-level classification categorizes the EEG signals into 30 classes. The recognition rates of 97.30%, and 93.64% were recorded at coarse and fine level classification, respectively. Experiments indicate the proposed work outperforms the previous methods.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view