SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Prehn J H M) "

Search: WFRF:(Prehn J H M)

  • Result 1-10 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Galluzzi, L, et al. (author)
  • Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes.
  • 2009
  • In: Cell death and differentiation. - : Springer Science and Business Media LLC. - 1476-5403 .- 1350-9047. ; 16:8, s. 1093-107
  • Research review (peer-reviewed)abstract
    • Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases. Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies. It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios. Thus far, dozens of methods have been proposed to quantify cell death-related parameters. However, no guidelines exist regarding their use and interpretation, and nobody has thoroughly annotated the experimental settings for which each of these techniques is most appropriate. Here, we provide a nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls. These guidelines are intended for investigators who study cell death, as well as for reviewers who need to constructively critique scientific reports that deal with cellular demise. Given the difficulties in determining the exact number of cells that have passed the point-of-no-return of the signaling cascades leading to cell death, we emphasize the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Crivello, M., et al. (author)
  • Vascular regression precedes motor neuron loss in the FUS (1-359) ALS mouse model
  • 2019
  • In: Disease Models and Mechanisms. - : Company of Biologists Ltd. - 1754-8403 .- 1754-8411. ; 12:8
  • Journal article (peer-reviewed)abstract
    • Amyotrophic lateral sclerosis (ALS) presents a poorly understood pathogenesis. Evidence from patients and mutant SOD1 mouse models suggests vascular damage may precede or aggravate motor dysfunction in ALS. We have previously shown angiogenin (ANG) treatment enhances motor neuron survival, delays motor dysfunction and prevents vascular regression in the SOD1G93A ALS model. However, the existence of vascular defects at different stages of disease progression remains to be established in other ALS models. Here, we assessed vascular integrity in vivo throughout different disease stages, and investigated whether ANG treatment reverses vascular regression and prolongs motor neuron survival in the FUS (1-359) mouse model of ALS. Lumbar spinal cord tissue was collected from FUS (1-359) and non-transgenic control mice at postnatal day (P)50, P90 and P120. We found a significant decrease in vascular network density in lumbar spinal cords from FUS (1-359) mice by day 90, at which point motor neuron numbers were unaffected. ANG treatment did not affect survival or counter vascular regression. Endogenous Ang1 and Vegf expression were unchanged at P50 and P90; however, we found a significant decrease in miRNA 126 at P50, indicating vascular integrity in FUS mice may be compromised via an alternative pathway. Our study demonstrates that vascular regression occurs before motor neuron degeneration in FUS (1-359) mice, and highlights that heterogeneity in responses to novel ALS therapeutics can already be detected in preclinical mouse models of ALS.
  •  
9.
  • Guida, Florence, et al. (author)
  • The blood metabolome of incident kidney cancer: A case-control study nested within the MetKid consortium
  • 2021
  • In: PLoS Medicine. - : Public Library of Science (PLOS). - 1549-1277 .- 1549-1676. ; 18:9
  • Journal article (peer-reviewed)abstract
    • Background: Excess bodyweight and related metabolic perturbations have been implicated in kidney cancer aetiology, but the specific molecular mechanisms underlying these relationships are poorly understood. In this study, we sought to identify circulating metabolites that predispose kidney cancer and to evaluate the extent to which they are influenced by body mass index (BMI).Methods and findings: We assessed the association between circulating levels of 1,416 metabolites and incident kidney cancer using pre-diagnostic blood samples from up to 1,305 kidney cancer case–control pairs from 5 prospective cohort studies. Cases were diagnosed on average 8 years after blood collection. We found 25 metabolites robustly associated with kidney cancer risk. In particular, 14 glycerophospholipids (GPLs) were inversely associated with risk, including 8 phosphatidylcholines (PCs) and 2 plasmalogens. The PC with the strongest association was PC ae C34:3 with an odds ratio (OR) for 1 standard deviation (SD) increment of 0.75 (95% confidence interval [CI]: 0.68 to 0.83, p = 2.6 × 10−8). In contrast, 4 amino acids, including glutamate (OR for 1 SD = 1.39, 95% CI: 1.20 to 1.60, p = 1.6 × 10−5), were positively associated with risk. Adjusting for BMI partly attenuated the risk association for some—but not all—metabolites, whereas other known risk factors of kidney cancer, such as smoking and alcohol consumption, had minimal impact on the observed associations. A mendelian randomisation (MR) analysis of the influence of BMI on the blood metabolome highlighted that some metabolites associated with kidney cancer risk are influenced by BMI. Specifically, elevated BMI appeared to decrease levels of several GPLs that were also found inversely associated with kidney cancer risk (e.g., −0.17 SD change [ßBMI] in 1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2) levels per SD change in BMI, p = 3.4 × 10−5). BMI was also associated with increased levels of glutamate (ßBMI: 0.12, p = 1.5 × 10−3). While our results were robust across the participating studies, they were limited to study participants of European descent, and it will, therefore, be important to evaluate if our findings can be generalised to populations with different genetic backgrounds.Conclusions: This study suggests a potentially important role of the blood metabolome in kidney cancer aetiology by highlighting a wide range of metabolites associated with the risk of developing kidney cancer and the extent to which changes in levels of these metabolites are driven by BMI - the principal modifiable risk factor of kidney cancer.
  •  
10.
  • Vehmas, A. P., et al. (author)
  • Liver lipid metabolism is altered by increased circulating estrogen to androgen ratio in male mouse
  • 2016
  • In: Journal of Proteomics. - : Elsevier BV. - 1874-3919. ; 133, s. 66-75
  • Journal article (peer-reviewed)abstract
    • Estrogens are suggested to lower the risk of developing metabolic syndrome in both sexes. In this study, we investigated how the increased circulating estrogen-to-androgen ratio (E/A) alters liver lipid metabolism in males. The cytochrome P450 aromatase (P450arom) is an enzyme converting androgens to estrogens. Male mice overexpressing human aromatase enzyme (AROM + mice), and thus have high circulating E/A, were used as a model in this study. Proteomics and gene expression analyses indicated an increase in the peroxisomal beta-oxidation in the liver of AROM + mice as compared with their wild type littermates. Correspondingly, metabolomic analysis revealed a decrease in the amount of phosphatidylcholines with long-chain fatty acids in the plasma. With interest we noted that the expression of Cyp4a12a enzyme, which specifically metabolizes arachidonic acid (AA) to 20-hydroxy AA, was dramatically decreased in the AROM + liver. As a consequence, increased amounts of phospholipids having AA as a fatty acid tail were detected in the plasma of the AROM + mice. Overall, these observations demonstrate that high circulating E/A in males is linked to indicators of higher peroxisomal beta-oxidation and lower AA metabolism in the liver. Furthermore, the plasma phospholipid profile reflects the changes in the liver lipid metabolism. (C) 2015 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view