SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Proffitt Michael H.) "

Search: WFRF:(Proffitt Michael H.)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Alimena, Juliette, et al. (author)
  • Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider
  • 2020
  • In: Journal of Physics G. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 47:9
  • Journal article (peer-reviewed)abstract
    • Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments-as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER-to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity 'dark showers', highlighting opportunities for expanding the LHC reach for these signals.
  •  
2.
  • Khosrawi, Farahnaz, et al. (author)
  • Assessment of the interannual variability and influence of the QBO and upwelling on tracer-tracer distributions of N2O and O3 in the tropical lower stratosphere
  • 2013
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:7, s. 3619-3641
  • Journal article (peer-reviewed)abstract
    • A modified form of tracer-tracer correlations of N2O and O3 has been used as a tool for the evaluation of atmospheric photochemical models. Applying this method monthly averages of N2O and O3 are derived for both hemispheres by partitioning the data into altitude (or potential temperature) bins and then averaging over a fixed interval of N2O. In a previous study, the method has been successfully applied to the validation of two Chemical Transport Models (CTMs) and one Chemistry-Climate Model (CCM) using 1-year climatology derived from the Odin Sub Millimetre Radiometer (Odin/SMR). However, the applicability of a 1-year climatology of monthly averages of N2O and O3 has been questioned due to the inability of some CCMs to simulate a specific year for the evaluation of CCMs. In this study, satellite measurements from Odin/SMR, the Aura Microwave Limb Sounder (Aura/MLS), the Michelson Interferometer for Passive Atmospheric Sounding on ENVISAT (ENVISAT/MIPAS), and the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA-1 and CRISTA-2) as well as model simulations from the Whole Atmosphere Community Climate Model (WACCM) are considered. By using seven to eight years of satellite measurements derived between 2003 and 2010 from Odin/SMR, Aura/MLS, ENVISAT/MIPAS and six years of model simulations from WACCM the interannual variability of lower stratospheric monthly averages of N2O and O3 is assessed. It is shown that the interannual variability of the monthly averages of N2O and O3 is low and thus can be easily distinguished from model deficiencies. Further, it is investigated why large differences between Odin/SMR observations and model simulations from the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA) and the atmospheric general circulation model ECHAM5/Messy1 are found for the Northern and Southern Hemisphere tropics (0° to 30° N and 0° to −30° S, respectively). The differences between model simulations and observations are most likely caused by an underestimation of the quasi-biennial oscillation and tropical upwelling by the models as well as due to biases and/or instrument noise from the satellite instruments. Finally, an inter-comparison between Odin/SMR, Aura/MLS, ENVISAT/MIPAS and WACCM was performed. The comparison shows that these data sets are generally in good agreement but that also some known biases of the data sets are clearly visible in the monthly averages, thus showing that this method is not only a valuable tool for model evaluation but also for satellite inter-comparisons.
  •  
3.
  • Khosrawi, Farahnaz, 1971-, et al. (author)
  • Evaluation of CLaMS, KASIMA and ECHAM5/MESSy1 simulations in the lower stratosphere using observations of Odin/SMR and ILAS/ILAS-II
  • 2009
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 9:15, s. 5759-5783
  • Journal article (peer-reviewed)abstract
    • 1-year data sets of monthly averaged nitrous oxide (N2O) and ozone (O3) derived from satellite measurements were used as a tool for the evaluation of atmospheric photochemical models. Two 1-year data sets, one solar occultation data set derived from the Improved Limb Atmospheric Spectrometer (ILAS and ILAS-II) and one limb sounding data set derived from the Odin Sub-Millimetre Radiometer (Odin/SMR) were employed. Here, these data sets are used for the evaluation of two Chemical Transport Models (CTMs), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA) and the Chemical Lagrangian Model of the Stratosphere (CLaMS) as well as for one Chemistry-Climate Model (CCM), the atmospheric chemistry general circulation model ECHAM5/MESSy1 (E5M1) in the lower stratosphere with focus on the Northern Hemisphere. Since the Odin/SMR measurements cover the entire hemisphere, the evaluation is performed for the entire hemisphere as well as for the low latitudes, midlatitudes and high latitudes using the Odin/SMR 1-year data set as reference. To assess the impact of using different data sets for such an evaluation study we repeat the evaluation for the polar lower stratosphere using the ILAS/ILAS-II data set. Only small differences were found using ILAS/ILAS-II instead of Odin/SMR as a reference, thus, showing that the results are not influenced by the particular satellite data set used for the evaluation. The evaluation of CLaMS, KASIMA and E5M1 shows that all models are in agreement with Odin/SMR and ILAS/ILAS-II. Differences are generally in the range of ±20%. Larger differences (up to −40%) are found in all models at 500±25 K for N2O mixing ratios greater than 200 ppbv, thus in air masses of tropical character. Generally, the largest differences were found for the tropics and the lowest for the polar regions. However, an underestimation of polar winter ozone loss was found both in KASIMA and E5M1 both in the Northern and Southern Hemisphere.
  •  
4.
  • Khosrawi, Farahnaz, et al. (author)
  • Monthly averaged ozone and nitrous oxide from the Improved Limb Atmospheric Spectrometer (ILAS) in the Northern and Southern Hemisphere polar regions
  • 2004
  • In: Journal of Geophysical Research. ; 109
  • Journal article (peer-reviewed)abstract
    • Northern and southern hemispheric averaged ozone (O3) and nitrous oxide (N2O) measured by the Improved Limb Atmospheric Spectrometer (ILAS) were used to examine photochemical and dynamical changes in high-latitude O3 distributions. Using correlations of O3 versus N2O, the ILAS data are organized monthly in both hemispheres by partitioning these data into equal bins of altitude or potential temperature. The resulting families of curves help to differentiate O3 changes due to photochemistry from those due to transport. Our study extends the work of Proffitt et al. [2003] for the Northern Hemisphere to the Southern Hemisphere. Further, our study confirms and extends their results for the Northern Hemisphere by applying their analysis to a significantly greater altitude range. As in the Northern Hemisphere, the families of curves for the altitude, and potential temperature bins in the Southern Hemisphere are separated and generally do not cross. In both hemispheres a better separation is found for the potential temperature binning. In the Southern Hemisphere November and December data, preserved photochemical O3 loss is evident in the lower stratosphere. Further, summer ozone loss is evident in the Southern Hemisphere from January to March. In the Arctic, ongoing photochemical O3 loss is evident in the Northern Hemisphere spring data. While at higher altitudes the correlation between N2O and O3 is generally positive (increasing N2O with increasing O3), at lower levels the correlation is negative. This change of correlation from positive to negative can be interpreted in terms of photochemical and dynamical processes. Strong descent causes a steepening of the positively correlated curves, while the curves change their slope from positive to negative if photochemical destruction of O3 is present and descent is weak. The level of slope change is also photochemically influenced and therefore changes with season. Data sets such as the one derived here may be useful for testing atmospheric models and for identifying future changes in stratospheric ozone.
  •  
5.
  • Khosrawi, Farahnaz, et al. (author)
  • Monthly averages of nitrous oxide and ozone for the Northern and Southern Hemisphere high latitudes: A ``one-year climatology'' derived from ILAS/ILAS-II observations
  • 2006
  • In: Journal of Geophysical Research. ; 111:D11S11
  • Journal article (peer-reviewed)abstract
    • Correlations of ozone (O3) and nitrous oxide (N2O) have been suggested as a tool for validating photochemical models and as a reference for estimating high-latitude ozone loss. However, so far no analysis of ozone-tracer relations is available that provides agood temporal coverage during all months. Here we combine measurements from the Improved Limb Atmospheric Spectrometers (ILAS/ILAS-II) to derive an O3/N2O climatology for the high-latitude regions in the Northern and Southern Hemisphere foreach month of the year, thus providing a complete seasonal cycle. ILAS and ILAS-II operated on board the Advanced Earth Observing Satellite (ADEOS/ADEOS-II), and both instruments use the solar occultation technique. ILAS operated for 8 months in 1996/1997,and ILAS-II operated for 7 months in 2003. The ILAS-II measurements cover the months that are not available from ILAS. The ILAS/ILAS-II correlations of ozone versus nitrous oxide are organized monthly in both hemispheres by partitioning these data into equal bins of altitude or potential temperature. The resulting families of curves allow separation of ozone changes due to photochemistry from those due to transport. The combined ILAS/ILAS-II data set corroborates earlier findings that the families of O3/N2O curves are separated and generally do not cross and further that the separation is much clearer for the potential temperature binning than for the altitude binning. The much clearer separation for the potential temperature binning is due to transport being predominantly isentropic. Thus these curves are particularly suitable for the validation of photochemical models. The seasonal cycle of O3/N2O distributions in the Northern and Southern Hemisphere high latitudes is found to be rather different. In the Southern Hemisphere, O3/N2O distributions are influenced by the strong chemical ozone loss in the Antarctic vortex and by a much longer duration of the polar vortex. In the Northern Hemisphere, diabatic descent is much more pronounced. Solely during the setup phase of the polar vortex the N2O/O3 distributions in the two hemispheres are rather similar.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view