SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Puschmann Till B.) "

Search: WFRF:(Puschmann Till B.)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Andreasson, K. I., et al. (author)
  • Targeting innate immunity for neurodegenerative disorders of the central nervous system
  • 2016
  • In: Journal of Neurochemistry. - : Wiley. - 0022-3042. ; , s. 653-693
  • Journal article (peer-reviewed)abstract
    • Neuroinflammation is critically involved in numerous neurodegenerative diseases, and key signaling steps of innate immune activation hence represent promising therapeutic targets. This mini review series originated from the 4th Venusberg Meeting on Neuroinflammation held in Bonn, Germany, 7–9th May 2015, presenting updates on innate immunity in acute brain injury and chronic neurodegenerative disorders, such as traumatic brain injury and Alzheimer disease, on the role of astrocytes and microglia, as well as technical developments that may help elucidate neuroinflammatory mechanisms and establish clinical relevance. In this meeting report, a brief overview of physiological and pathological microglia morphology is followed by a synopsis on PGE2 receptors, insights into the role of arginine metabolism and further relevant aspects of neuroinflammation in various clinical settings, and concluded by a presentation of technical challenges and solutions when working with microglia and astrocyte cultures. Microglial ontogeny and induced pluripotent stem cell-derived microglia, advances of TREM2 signaling, and the cytokine paradox in Alzheimer's disease are further contributions to this article. (Figure presented.) Neuroinflammation is critically involved in numerous neurodegenerative diseases, and key signaling steps of innate immune activation hence represent promising therapeutic targets. This mini review series originated from the 4th Venusberg Meeting on Neuroinflammation held in Bonn, Germany, 7–9th May 2015, presenting updates on innate immunity in acute brain injury and chronic neurodegenerative disorders, such as traumatic brain injury and Alzheimer's disease, on the role of astrocytes and microglia, as well as technical developments that may help elucidate neuroinflammatory mechanisms and establish clinical relevance. In this meeting report, a brief overview on physiological and pathological microglia morphology is followed by a synopsis on PGE2 receptors, insights into the role of arginine metabolism and further relevant aspects of neuroinflammation in various clinical settings, and concluded by a presentation of technical challenges and solutions when working with microglia cultures. Microglial ontogeny and induced pluripotent stem cell-derived microglia, advances of TREM2 signaling, and the cytokine paradox in Alzheimer's disease are further contributions to this article. © 2016 International Society for Neurochemistry
  •  
2.
  • Chen, Meng, et al. (author)
  • Increased Neuronal Differentiation of Neural Progenitor Cells Derived from Phosphovimentin-Deficient Mice.
  • 2018
  • In: Molecular neurobiology. - : Springer Science and Business Media LLC. - 1559-1182 .- 0893-7648. ; 55:7, s. 5478-5489
  • Journal article (peer-reviewed)abstract
    • Vimentin is an intermediate filament (also known as nanofilament) protein expressed in several cell types of the central nervous system, including astrocytes and neural stem/progenitor cells. Mutation of the vimentin serine sites that are phosphorylated during mitosis (VIMSA/SA) leads to cytokinetic failures in fibroblasts and lens epithelial cells, resulting in chromosomal instability and increased expression of cell senescence markers. In this study, we investigated morphology, proliferative capacity, and motility of VIMSA/SAastrocytes, and their effect on the differentiation of neural stem/progenitor cells. VIMSA/SAastrocytes expressed less vimentin and more GFAP but showed a well-developed intermediate filament network, exhibited normal cell morphology, proliferation, and motility in an in vitro wound closing assay. Interestingly, we found a two- to fourfold increased neuronal differentiation of VIMSA/SAneurosphere cells, both in a standard 2D and in Bioactive3D cell culture systems, and determined that this effect was neurosphere cell autonomous and not dependent on cocultured astrocytes. Using BrdU in vivo labeling to assess neural stem/progenitor cell proliferation and differentiation in the hippocampus of adult mice, one of the two major adult neurogenic regions, we found a modest increase (by 8%) in the fraction of newly born and surviving neurons. Thus, mutation of the serine sites phosphorylated in vimentin during mitosis alters intermediate filament protein expression but has no effect on astrocyte morphology or proliferation, and leads to increased neuronal differentiation of neural progenitor cells.
  •  
3.
  • Chen, Meng, et al. (author)
  • Neural Progenitor Cells in Cerebral Cortex of Epilepsy Patients do not Originate from Astrocytes Expressing GLAST.
  • 2017
  • In: Cerebral cortex (New York, N.Y. : 1991). - : Oxford University Press (OUP). - 1460-2199 .- 1047-3211. ; 27:12, s. 5672-5682
  • Journal article (peer-reviewed)abstract
    • Adult neurogenesis in human brain is known to occur in the hippocampus, the subventricular zone, and the striatum. Neural progenitor cells (NPCs) were reported in the cortex of epilepsy patients; however, their identity is not known. Since astrocytes were proposed as the source of neural progenitors in both healthy and diseased brain, we tested the hypothesis that NPCs in the epileptic cortex originate from reactive, alternatively, de-differentiated astrocytes that express glutamate aspartate transporter (GLAST). We assessed the capacity to form neurospheres and the differentiation potential of cells dissociated from fresh cortical tissue from patients who underwent surgical treatment for pharmacologically intractable epilepsy. Neurospheres were generated from 57% of cases (8/14). Upon differentiation, the neurosphere cells gave rise to neurons, oligodendrocytes, and astrocytes. Sorting of dissociated cells showed that only cells negative for GLAST formed neurospheres. In conclusion, we show that cells with neural stem cell properties are present in brain cortex of epilepsy patients, and that these cells are not GLAST-positive astrocytes.
  •  
4.
  • Möllerström, Elin, et al. (author)
  • Classification of Subpopulations of Cells Within Human Primary Brain Tumors by Single Cell Gene Expression Profiling
  • 2015
  • In: Neurochemical Research. - : Springer Science and Business Media LLC. - 0364-3190 .- 1573-6903. ; 40:2, s. 336-352
  • Journal article (peer-reviewed)abstract
    • Brain tumors are heterogeneous with respect to genetic and histological properties of cells within the tumor tissue. To study subpopulations of cells, we developed a protocol for obtaining viable single cells from freshly isolated human brain tissue for single cell gene expression profiling. We evaluated this technique for characterization of cell populations within brain tumor and tumor penumbra. Fresh tumor tissue was obtained from one astrocytoma grade IV and one oligodendroglioma grade III tumor as well as the tumor penumbra of the latter tumor. The tissue was dissociated into individual cells and the expression of 36 genes was assessed by reverse transcription quantitative PCR followed by data analysis. We show that tumor cells from both the astrocytoma grade IV and oligodendroglioma grade III tumor constituted cell subpopulations defined by their gene expression profiles. Some cells from the oligodendroglioma grade III tumor proper shared molecular characteristics with the cells from the penumbra of the same tumor suggesting that a subpopulation of cells within the oligodendroglioma grade III tumor consisted of normal brain cells. We conclude that subpopulations of tumor cells can be identified by using single cell gene expression profiling.
  •  
5.
  • Puschmann, Till B., et al. (author)
  • A Novel Method for Three-Dimensional Culture of Central Nervous System Neurons.
  • 2014
  • In: Tissue engineering. Part C, Methods. - 1937-3392 .- 1937-3384. ; 20:6, s. 485-492
  • Journal article (peer-reviewed)abstract
    • Neuronal signal transduction and communication in vivo is based on highly complex and dynamic networks among neurons expanding in a three-dimensional (3D) manner. Studies of cell-cell communication, synaptogenesis, and neural network plasticity constitute major research areas for understanding the involvement of neurons in neurodegenerative diseases, such as Huntington's, Alzheimer's, and Parkinson's disease, and in regenerative neural plasticity responses in situations, such as neurotrauma or stroke. Various cell culture systems constitute important experimental platforms to study neuronal functions in health and disease. A major downside of the existing cell culture systems is that the alienating planar cell environment leads to aberrant cell-cell contacts and network formation and increased reactivity of cell culture-contaminating glial cells. To mimic a suitable 3D environment for the growth and investigation of neuronal networks in vitro has posed an insurmountable challenge. Here, we report the development of a novel electrospun, polyurethane nanofiber-based 3D cell culture system for the in vitro support of neuronal networks, in which neurons can grow freely in all directions and form network structures more complex than any culture system has so far been able to support. In this 3D system, neurons extend processes from their cell bodies as a function of the nanofiber diameter. The nanofiber scaffold also minimizes the reactive state of contaminating glial cells.
  •  
6.
  • Puschmann, Till B., et al. (author)
  • Bioactive 3D cell culture system minimizes cellular stress and maintains the in vivo-like morphological complexity of astroglial cells
  • 2013
  • In: Glia. - : Wiley. - 0894-1491 .- 1098-1136. ; 61:3, s. 432-440
  • Journal article (peer-reviewed)abstract
    • We tested the hypothesis that astrocytes grown in a suitable three-dimensional (3D) cell culture system exhibit morphological and biochemical features of in vivo astrocytes that are otherwise lost upon transfer from the in vivo to a two-dimensional (2D) culture environment. First, we report development of a novel bioactively coated nanofiber-based 3D culture system (Bioactive3D) that supports cultures of primary mouse astrocytes. Second, we show that Bioactive3D culture system maintains the in vivo-like morphological complexity of cultured cells, allows movement of astrocyte filopodia in a way that resembles the in vivo situation, and also minimizes the cellular stress, an inherent feature of standard 2D cell culture systems. Third, we demonstrate that the expression of gap junctions is reduced in astrocytes cultured in a 3D system that supports well-organized cell-cell communication, in contrast to the enforced planar tiling of cells in a standard 2D system. Finally, we show that astrocytes cultured in the Bioactive3D system do not show the undesired baseline activation but are fully responsive to activation-inducing stimuli. Thus, astrocytes cultured in the Bioactive3D appear to more closely resemble astrocytes in vivo and represent a superior in vitro system for assessing (patho)physiological and pharmacological responses of these cells and potentially also in co-cultures of astrocytes and other cell types.
  •  
7.
  • Puschmann, Till B., et al. (author)
  • HB-EGF affects astrocyte morphology, proliferation, differentiation, and the expression of intermediate filament proteins
  • 2014
  • In: Journal of Neurochemistry. - : Wiley. - 1471-4159 .- 0022-3042. ; 128:6, s. 878-889
  • Journal article (peer-reviewed)abstract
    • Heparin-binding epidermal growth factor-like growth factor (HB-EGF), a vascular-derived trophic factor, belongs to the epidermal growth factor (EGF) family of neuroprotective, hypoxia-inducible proteins released by astrocytes in CNS injuries. It was suggested that HB–EGF can replace fetal calf serum (FCS) in astrocyte cultures. We previously demonstrated that in contrast to standard 2D cell culture systems, Bioactive3D culture system, when used with FCS, minimizes the baseline activation of astrocytes and preserves their complex morphology. Here, we show that HB-EGF induced EGF receptor (EGFR) activation by Y1068 phosphorylation, Mapk/Erk pathway activation, and led to an increase in cell proliferation, more prominent in Bioactive3D than in 2D cultures. HB-EGF changed morphology of 2D and Bioactive3D cultured astrocytes toward a radial glia-like phenotype and induced the expression of intermediate filament and progenitor cell marker protein nestin. Glial fibrillary acidic protein (GFAP) and vimentin protein expression was unaffected. RT-qPCR analysis demonstrated that HB-EGF affected the expression of Notch signaling pathway genes, implying a role for the Notch signaling in HB-EGF-mediated astrocyte response. HB-EGF can be used as a FCS replacement for astrocyte expansion and in vitro experimentation both in 2D and Bioactive3D culture systems; however, caution should be exercised since it appears to induce partial de-differentiation of astrocytes.HB-EGF (heparin-binding EGF-like growth factor) was previously suggested to replace serum, a common and undefined component in primary astrocyte cultures. We show that both in standard 2D and in our newly developed Bioactive3D culture system, HB-EGF affects astrocyte morphology, proliferation, gene/protein expression and leads to partial de-differentiation of astrocytes. Thus, HB-EGF should only be used with caution as a serum replacement in astrocyte cultures.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view