SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rafferty T.M.) "

Search: WFRF:(Rafferty T.M.)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Shimwell, T. W., et al. (author)
  • The LOFAR Two-metre Sky Survey: V. Second data release
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 659
  • Journal article (peer-reviewed)abstract
    • In this data release from the ongoing LOw-Frequency ARray (LOFAR) Two-metre Sky Survey we present 120a 168 MHz images covering 27% of the northern sky. Our coverage is split into two regions centred at approximately 12h45m +44 30a and 1h00m +28 00a and spanning 4178 and 1457 square degrees respectively. The images were derived from 3451 h (7.6 PB) of LOFAR High Band Antenna data which were corrected for the direction-independent instrumental properties as well as direction-dependent ionospheric distortions during extensive, but fully automated, data processing. A catalogue of 4 396 228 radio sources is derived from our total intensity (Stokes I) maps, where the majority of these have never been detected at radio wavelengths before. At 6a resolution, our full bandwidth Stokes I continuum maps with a central frequency of 144 MHz have: a median rms sensitivity of 83 μJy beama 1; a flux density scale accuracy of approximately 10%; an astrometric accuracy of 0.2a; and we estimate the point-source completeness to be 90% at a peak brightness of 0.8 mJy beama 1. By creating three 16 MHz bandwidth images across the band we are able to measure the in-band spectral index of many sources, albeit with an error on the derived spectral index of > a ±a 0.2 which is a consequence of our flux-density scale accuracy and small fractional bandwidth. Our circular polarisation (Stokes V) 20a resolution 120a168 MHz continuum images have a median rms sensitivity of 95 μJy beama 1, and we estimate a Stokes I to Stokes V leakage of 0.056%. Our linear polarisation (Stokes Q and Stokes U) image cubes consist of 480a A a 97.6 kHz wide planes and have a median rms sensitivity per plane of 10.8 mJy beama 1 at 4a and 2.2 mJy beama 1 at 20a; we estimate the Stokes I to Stokes Q/U leakage to be approximately 0.2%. Here we characterise and publicly release our Stokes I, Q, U and V images in addition to the calibrated uv-data to facilitate the thorough scientific exploitation of this unique dataset.
  •  
2.
  • Ounpraseuth, S., et al. (author)
  • A method to quantify mouse coat-color proportions
  • 2009
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 4:4, s. e5414-
  • Journal article (peer-reviewed)abstract
    • Coat-color proportions and patterns in mice are used as assays for many processes such as transgene expression, chimerism, and epigenetics. In many studies, coat-color readouts are estimated from subjective scoring of individual mice. Here we show a method by which mouse coat color is quantified as the proportion of coat shown in one or more digital images. We use the yellow-agouti mouse model of epigenetic variegation to demonstrate this method. We apply this method to live mice using a conventional digital camera for data collection. We use a raster graphics editing program to convert agouti regions of the coat to a standard, uniform, brown color and the yellow regions of the coat to a standard, uniform, yellow color. We use a second program to quantify the proportions of these standard colors. This method provides quantification that relates directly to the visual appearance of the live animal. It also provides an objective analysis with a traceable record, and it should allow for precise comparisons of mouse coats and mouse cohorts within and between studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view